
Online Area Covering Autonomous Robot in Unknown
Environments

Guohua Ren∗, Olimpiya Saha∗, Javad Heydari∗, Viswanath Ganapathy†, Mohak Shah
{guohua.ren,olimpiya.saha,javad.heydari,viswanath.ganapathy,mohak.shah}@lge.com

Advanced AI Lab, LG Electronics
Santa Clara, CA, USA, 95054

ABSTRACT
Autonomous area covering robots have been gaining popularity in
both residential and commercial settings for a variety of purposes,
including cleaning, lawn mowing, etc. In this paper, we explore the
effectiveness of deep reinforcement learning (RL) algorithms for
area coverage with minimal overlap. Through simulation exper-
iments in grid based environments and in the Gazebo simulator,
we show that Deep Q-Network (DQN) based algorithms efficiently
cover unknown indoor environments. Furthermore, we demon-
strate that DQN with prioritized experience replay (DQN-PER)
significantly minimizes the sample complexity as well as degree of
overlap when compared with DQN for area coverage. In addition,
from simulations we infer that DQN-PER outperforms state-of-art
online coverage algorithms, e.g., BA* and Spiral-STC. Our exper-
iments also indicate that a pre-trained RL agent can efficiently
cover new unseen environments with minimal additional sample
complexity. Finally, we propose a novel way of formulating an area-
agnostic state representation with fixed dimensions for efficiently
covering unknown environments with unknown area.

KEYWORDS
coverage path planning, reinforcement learning, autonomous robot

ACM Reference Format:
Guohua Ren∗, Olimpiya Saha∗, Javad Heydari∗, Viswanath Ganapathy†,
Mohak Shah. 2018. Online Area Covering Autonomous Robot in Unknown
Environments. InWoodstock ’18: ACM Symposium on Neural Gaze Detection,
June 03–05, 2018, Woodstock, NY . ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Autonomous area covering robots have been deployed successfully
in residential and commercial environments for several tasks [5],
[8], [19]. These tasks include cleaning, lawn mowing, painting,
landmine detection, surveillance and harvesting. Area covering
robots aim at visiting every point in the area not occupied by the

∗First three authors contributed equally to this research.
†Viswanath Ganapathy is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

obstacles, while at the same time minimizing the overlap, coverage
time, number of turns, or energy consumption [4, 11].

The coverage path planning (CPP) algorithms, based on their
knowledge of the environment such as the size and shape of the
area, obstacle number, and obstacle locations, can be categorized
into offline and online methods. The offline CPP problem, where
the robot has full geometric description of the area, is shown to
be NP-hard [3]. However, many approximation or heuristic algo-
rithms have been proposed, such as the boustrophedon or Morse
decomposition based coverage algorithms [2, 7, 17], the spiral path
coverage [12], and the spanning-tree based coverage [9], [10]. Fur-
ther improvements in coverage have been explored using genetic
algorithms [15] or using Riemannian surface properties for generic
3D environments [16].

The full-knowledge assumption is not practical, especially for
commercial robots that are manufactured for general purposes such
as vacuum cleaning and lawn mowing. In the online version of the
problem, the robot has no, or only partial, knowledge about the
size and geometry of the area to be covered, or shapes and loca-
tions of the obstacles. In such scenarios, the robot accumulates the
knowledge of the environment over time using on-board sensors
and data storage, and builds an online map of the area. The bous-
trophedon coverage, spiral path, and spanning tree techniques are
adapted to the online version of the problem through using the
online map [1, 6, 13, 24, 25].

The performance of the aforementioned online algorithms hinge
heavily on the accuracy of the area map generated by the robot
while navigating around the environment. Even though these algo-
rithms are easily implementable on robotic platforms, they tend to
achieve sub-optimal coverage with significant overlap. On the other
hand, these are universal algorithms, which do not adapt to the
environments the robots are being deployed. In many applications,
such as vacuum cleaning and lawn mowing, the robot will be used
in the same set of environments after sale. Therefore, in this paper,
we employ reinforcement learning to enable the robot to adapt to
the set of environments that the robot is being deployed over time.

The paper’s contribution includes using DQN and its variants to
achieve coverage in unknown indoor environments. Firstly, we de-
sign the state representation and a non-sparse reward function for
the deep RL agent to achieve coverage with constraints on overlap.
Through extensive simulations we show that the DQN agent learns
to achieve coverage across environments with different area as well
as number and distribution of the obstacles. Secondly, we reduce
the sample complexity by employing a DQN-PER agent. We also
compare the performance of the DQN-PER agent with state of the
art online methods [25] and [10]. Thirdly, to account for more real-
istic scenarios where the area of the deployed environment is not

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Guohua Ren∗ , Olimpiya Saha∗ , Javad Heydari∗ , Viswanath Ganapathy†, Mohak Shah

available, we propose a novel way to adapt the state representation,
thereby achieving an area agnostic RL agent with fixed dimensions.
Furthermore, we show that this area agnostic RL agent has the
advantage of being able to extrapolate coverage from a small area
to a larger area without explicit training on the larger area. Finally,
the performance of the RL agent is validated in the Gym-Gazebo
simulator.

2 PROBLEM FORMULATION
Consider an indoor environment, discretized into equal square-
shaped cells with side ℓ , generating a grid based environment of
size (𝑛1 × 𝑛2). In our modelling, the length of the cell ℓ is equal
to the diameter of the mobile robot. The unknown environment
consists of multiple obstacles with varying geometry and spacing.

Recall that the objective of the area covering robot is to cover
the free area of the environment as fast as possible. Minimizing
the coverage time is equivalent to minimizing the number of cell
revisits. To achieve this objective, we aim at finding a policy which
satisfies the following constraints:

min
𝜋

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 s.t. 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 > 𝐶min . (1)

In order to minimize overlap while achieving a desired coverage per-
formance, long-term planning is required for the robot to navigate
in the environment while avoiding obstacles. Hence, RL emerges
as a natural solution for the area coverage task.

3 REINFORCEMENT LEARNING
ALGORITHMS

Reinforcement learning handles the problem of an agent learning
to act in an environment, with the goal of maximizing a predefined
scalar reward signal.

3.1 Overview
At each discrete time step 𝑡 , the agent acquires an observation
𝑆𝑡 from the environment, selects a corresponding action 𝐴𝑡 , then
receives feedback from the environment in the form of a reward
𝑅𝑡+1 and the updated state information 𝑆𝑡+1. Such interaction is
formalized as a Markov Decision Process (MDP) which is a tuple
⟨S,A,𝑇 , 𝑟, 𝛾⟩ where S and A contain a finite set of states and
actions respectively. 𝑇 and 𝑟 are the corresponding state transition
function and reward function respectively and 𝛾 ∈ [0, 1] is the
discount factor which trades off between immediate and future
reward.

The way an agent selects actions is given by a policy 𝜋 that de-
fines a probability distribution over actions for each state the agent
is currently at. For any time step 𝑡 , we can define a discounted sum
of future rewards that the agent can collect as𝐺𝑡 =

∑∞
𝑘=0 𝛾

𝑘𝑅𝑡+𝑘+1.
The agent aims at determining an optimal policy to maximize the
expected discounted future reward.

Under a given policy 𝜋 , the value of taking action 𝑎 in a state 𝑠
is given in [22] by:

𝑄𝜋 (𝑠, 𝑎) = E[𝑅1 + 𝛾 · 𝑅2 + . . . |𝑆0 = 𝑠, 𝐴0 = 𝑎, 𝜋] (2)

The optimal value is 𝑄∗ (𝑠, 𝑎) = max𝜋 𝑄𝜋 (𝑠, 𝑎). An optimal pol-
icy can be derived by selecting the action with the highest action

value in each state. Q-learning [26] has been proposed to learn the
estimates of the optimal action values.

3.2 DQN and its Variants
However for most interesting problems, due to large state and/or
action spaces, learning all the state action values can be intractable.
To approximate the potentially high dimensional value functions
𝑄 (𝑠, 𝑎), a deep Q-network could be used:𝑄 (𝑠, 𝑎;\) with \ being the
prediction network parameters. In order to train the network, the
following loss function is minimized at each iteration 𝑖:

𝐿𝑖 (\𝑖) = E𝑠,𝑎,𝑟,𝑠′ [(𝑦𝐷𝑄𝑁

𝑖
−𝑄 (𝑠, 𝑎;\𝑖))2] (3)

where

𝑦
𝐷𝑄𝑁

𝑖
= 𝑟 + 𝛾 max

𝑎′
𝑄 (𝑠 ′, 𝑎′;\−) (4)

where \− corresponds to the parameters of a separate target net-
work. As proposed in [18], the target network shares the same
structure as the prediction network except that its parameters are
replicated from the prediction network every 𝜏 steps, so that \− = \𝑖
and kept fixed in all other steps.

Another important ingredient introduced in [18] is the use of
experience replay [23]. Observed transition tuples ⟨𝑠, 𝑎, 𝑟, 𝑠 ′⟩ are
stored in amemory buffer and later sampled uniformly to update the
network. A combination of the target network and the experience
replay improves the DQN performance dramatically [18].

DQN samples state action transitions uniformly from the expe-
rience replay buffer. However, some experiences might be more
useful than the others when training the agent. Ideally, we want
to sample those experiences with higher learning potential more
frequently. [21] proposed to sample transitions with probability 𝑝𝑡
relative to the difference between the prediction and the TD target:

𝑝𝑡 ∝ ∥𝑅𝑡+1 + 𝛾 max
𝑎′

𝑞\− (𝑆𝑡+1, 𝑎′) − 𝑞\ (𝑆𝑡 , 𝐴𝑡)∥𝜔 (5)

where 𝜔 is a hyper-parameter which determines the shape of the
probability distribution. This variant is known as DQN with priori-
tized experience replay (DQN PER). Specifically, in this paper, for
DQN-PER we apply Dueling Double DQN with prioritized experi-
ence replay.

Rainbow-DQN [14] has combined some of the best approaches
to improve DQN like double Q-learning, prioritized experience re-
play (PER), dueling networks, multi-step learning, distributional
reinforcement learning, and noisy nets. Rainbow-DQN has demon-
strated superior performance in comparison to other DQN variants
in several games of Atari.

4 DQN AGENT FOR COVERAGE IN
UNKNOWN ENVIRONMENTS

In this section, we describe the DQN agent and architecture of the
deep learning network for achieving efficient coverage in unknown
indoor environments. The key components which influence the
performance of the DQN agent are the reward function and the
state representation. The goal is to train the DQN agent to achieve a
predefined level of coverage in unknown environments and reduce
revisits to already covered regions in the environment.

Online Area Covering Autonomous Robot in Unknown Environments Woodstock ’18, June 03–05, 2018, Woodstock, NY

4.1 Reward Function
We experimented with several possible reward functions and came
up with the following simple non-sparse function. The reward
function for the DQN agent depends only on the current state:
for visiting an uncovered cell, it receives a positive reward of +1,
whereas for visiting a covered cell, it receives a negative reward of
−0.5. Each episode will end when either the predefined coverage
level is reached or the number of the steps exceeds a threshold.

4.2 State Representation
The state representation for the environments with known and
unknown area is described below:

4.2.1 Area of the environment is known. The dimensions of the
state is equal to the area of the indoor environment. We stack 3
matrices of size 𝑛1 × 𝑛2 into an 𝑛1 × 𝑛2 × 3 tensor. The first matrix
records the cells that have been covered so far. The second matrix
represents the obstacle locations in the locality of the robot detected
by the camera or 3D sensors. Specifically, its entries are all zeros
except in the 3 × 3 sub-matrix of its surrounding. The third matrix
captures the location of the robot, i.e., it is all zeros except for the
cell that the robot is present, which is set to 1.

4.2.2 Area of the environment is unknown. We choose a dimension
𝑛×𝑛 which is smaller than the area of the environment (𝑛 < 𝑛1, 𝑛 <

𝑛2). We stack 4matrices of size 𝑛×𝑛 into an𝑛×𝑛×4 tensor. The first
matrix records the cells that have been covered so far. The second
matrix represents the obstacle locations in the locality of the robot
detected by the camera or 3D sensors. Specifically, its entries are all
zeros except in the 3 × 3 sub-matrix of its surrounding. The third
and fourth matrix try to capture the actual location [𝑥,𝑦] in the
environment by decomposing it into [𝑥0+𝛿𝑥 ,𝑦0+𝛿𝑦]. [𝑥0, 𝑦0] varies
from one sub-environment to another. The third matrix captures
[𝑥0, 𝑦0] while the fourth matrix represents [𝛿𝑥 , 𝛿𝑦]. The number
of matrices we stack to the state representation can be varied to
represent even larger indoor environments.

4.3 Architecture of the RL Agent
The deep neural network consists of two convolutional layers fol-
lowed by two fully-connected layers. The first convolutional layer
has 16 3 × 3 filters and the second has 32 3 × 3 filters, both with a
stride of 1 followed by non-linearity. The final hidden layer con-
sists of 64 rectifier units and the output layer has 4 rectifier units
corresponding to valid actions (up, down, left, right) for the agent.

We use the Adam Optimizer with mini-batches of size 32 in all
experiments, learning rate is fixed as 0.001. The behavior policy
during training is 𝜖-greedy with 𝜖 annealed linearly from 1 to 0.1
over the first 100, 000 steps, and fixed at 0.1 thereafter. Discount
factor is fixed at 0.9. Huber loss is used when training our DQN
agent.

5 EXPERIMENTS
5.1 Evaluation Methodology
Grid based maze environments with varying coverage area and dis-
tribution of obstacles are considered to validate the performance of
the RL agent to achieve coverage with overlap constraints. We train

the agent in a set of unknown indoor environments and test it in
another set of unknown environments. The performance measures
achieved coverage, overlap and sample complexity, which form the
basis for validation of the RL agent.

The validation in themaze environments is followed by extensive
experiments in the Gazebo 7 simulator using a simulated Turtlebot3
waffle pi robot. We perform our experiments in 4 simulated indoor
environments with a dimension of 5 × 5 sq. meters. Figure 4 illus-
trates our Gazebo environments, the choice of which is inspired by
spaces in home and office environments [20].

5.2 Simulations in Maze Environments
The experiments in the maze environments have been divided as
follows to validate the performance in indoor environments.

5.2.1 Performance analysis of the RL agents. RL agents are trained
on a number of environments with different sizes and obstacle
configurations. Figures 1 (a) and (b) depict the performance in
15 × 15 and 19 × 19 mazes respectively as shown in Figure 3. Here
we compare the performance of a dueling double DQN-PER agent
and the DQN agent. For DQN-PER, we set 𝛼 = 0.6 and 𝛽0 = 0.4
where 𝛽 varies linearly from 𝛽0 to 1 during training [21].

5.2.2 Comparing RL agents with BA* and Full Spiral-STC. In or-
der to evaluate the advantage of our proposed RL-based coverage
method over classical non-learning based coverage techniques, we
have selected two non-learning based coverage algorithms- Full
Spiral STC [10] and BA*[25]. Full Spiral STC is a spanning tree
based coverage algorithm where the robot incrementally constructs
a spanning tree of the environment as it progressively completes
its coverage task while maintaining either a cloockwise or anti-
clockwise direction of motion. BA* is an online complete coverage
path planning algorithm which combines A* search with boustro-
phedon or zigzag motion to achieve complete coverage in unknown
environments. Both these algorithms can work without an a priori
map of the environment and have been demonstrated to achieve
good coverage performance with low overlap in a variety of 2D
grid environments. We have compared the extent of overlap of
all the three methods, after the agent has covered 90% of the free
space in the grid environments as illustrated in Figure 3. Figure 2
illustrates the comparative overlap performance achieved by all
the three methods in the same grid environments. As can be ob-
served from the figure, in all the environments, DQN-PER was able
to achieve much lower overlap performance than Full Spiral STC,
thus indicating its superiority over the latter. On the other hand, it
can be visualized from the figure that in 4 out of 6 environments,
DQN-PER was able to achieve lower overlap when compared to BA*.
The lower overlap achieved by BA* in environments as shown in
Figures 3 (a) and (c) can be attributed to the relatively simple nature
of these environments in terms of obstacle shape and distribution.
However, when the overlap performance was tested in complicated
and larger environments as illustrated in Figures 3 (b), (d), (e) and
(f), DQN-PER surpassed BA*.

5.2.3 Performance of RL agents in unseen environments. We vali-
date the performance of a model, pre-trained on mazes in Figures
3 (c) and (e), in unseen mazes of the same size. Exploration rate is

Woodstock ’18, June 03–05, 2018, Woodstock, NY Guohua Ren∗ , Olimpiya Saha∗ , Javad Heydari∗ , Viswanath Ganapathy†, Mohak Shah

(a) (c) (e)

(b) (d) (f)

Figure 1: RL performance on (a) 15 by 15 mazes and (b) 19 by 19 mazes. Transfer learning results on (c) 17 by 17 mazes and (d)
19 by 19mazes. Area agnostic results on (e) 15 by 15 mazes and (f) 19 by 19 mazes.

Figure 2: Comparative overlap performance of DQN-PER,
Full Spiral-STC and BA* in mazes (a)-(f) from Figure 3

fixed at 0.1 all the time. Figures 1 (c) and (d) show that for envi-
ronments with different sizes, using a pre-trained model achieves
faster convergence, leading to a higher level of coverage with signif-
icantly reduced overlap. Furthermore, by using pre-trained model
weights, higher initial coverage is achieved in testing environments.
The ability of pre-trained models to achieve high initial coverage
in unseen environments is attractive for practical deployment in
real world area covering robots. Factory trained robots will be able

(a)15 × 15 env 1 (c) 17 × 17 env 1 (e) 19 × 19 env 1

(b) 15 × 15 env 2 (d) 17 × 17 env 2 (f) 19 × 19 env 2

Figure 3: Example maze environments for experiments.
White cells represent free space. Black cells indicate static
obstacles.

to perform at a high initial coverage and improve the coverage
efficiency with additional samples from the deployed environment.

5.2.4 Area agnostic RL agent. So far, we have trained and evaluated
our DQN agents and achieved targeted performance across varying
environment sizes. However, in real life scenarios where room areas
vary and layouts are complicated, a DQN agent trained with state
representation proportional to the area of the environment will fail
to perform adequately. This offers motivation for training an agent
which is area agnostic.

Online Area Covering Autonomous Robot in Unknown Environments Woodstock ’18, June 03–05, 2018, Woodstock, NY

(a) Env 1 (b) Env 2 (c) Env 3 (d) Env 4

Figure 4: Indoor environments for our simulated experiments.

The state representation for environments with unknown area
is modified as described in section 4.2.2. The modified state rep-
resentation allows the location of the robot in environment to be
described in terms of an offset and relative position from the offset.
Therefore, the combined state representation for unknown area is
similar to the state representation for environments with known
area. The locations of the cells visited by the agent is retained in
the DQN memory buffer. In this way, the area agnostic DQN agent
learns to cover the entire area based on state representation of the
multiple intersecting smaller sub-environments.

An area agnostic agent (𝑛 = 13) is trained on a 15 by 15 envi-
ronment in Figure 1 (e), and achieves desired coverage. Also the
sample complexity of area agnostic agent is comparable to the area
aware agent (𝑛 = 15). Testing is performed on a new environment
using the trained area agnostic DQN agents. Similar to the area
aware scenario, higher initial coverage and faster convergence are
observed in Figures 1 (e).

Similarly for a 19 by 19 environment, an area agnostic agent
(𝑛 = 13, green curves) achieves comparable performance as an
area aware agent (𝑛 = 19, blue curves). We also evaluate how the
agnostic agent (𝑛 = 13) trained on the 15 by 15 environment in
Figure 3 (d) performs on the 19 by 19 environment in Figure 3
(f). As shown in Figure 1 (e) and (f), the model trained in a small
environment generalizes well to an unknown environment with
a larger area, without increasing the sample complexity. Learning
to cover a larger 19 by 19 area based on an area agnostic agent
trained on an unrelated 15 by 15 environment points to a promising
direction for RL model deployment in real world robots.

5.3 Simulations in Gazebo
We have conducted extensive experiments in the gym-Gazebo sim-
ulator to validate the performance of learning-based algorithms in
situations closely simulating the real-world.

In this study we conduct a comparative performance analysis
of DQN and Rainbow-DQN in the context of area coverage. Our
experiments are divided into two sets. In the first set of experiments,
we train the RL agent from scratch in each environment and analyze
its performance. In the second set of experiments, we use the pre-
trained weights achieved by training the RL agent in one of the
environments and train it in a different environment. The first
set of experimental results helps us analyze the general efficiency
of the RL agent for the coverage task whereas the second set of
experimental results helps us assess the generalization capability

of the RL agent when deployed in a new environment after having
been trained.

Figures 5 (a)-(d) illustrate the performance of DQN and Rainbow-
DQN in the 4 environments from Figure 4. We can see that overall
Rainbow-DQN achieves lower overlap and better or comparable
average coverage in all environments. In environments 1, 3 and
4, Rainbow-DQN and DQN were able to achieve a final average
coverage close to 80% while achieving maximum overlap of 40%.
In environment 2, coverage performance achieved by DQN and
Rainbow-DQN without deterministic action selection were close
to 60%. The lower coverage performance in environment 2 can be
attributed to the wide open spaces in this environment in contrast
to the other two environments which are cluttered with multiple
obstacles.

Figures 5 (e) and (f) demonstrate the performance of DQN and
Rainbow-DQN in environment 3 using a pre-trained network which
achieves coverage in environment 1 (Figure 4). The pre-trained
model enables the RL agent to start with a higher initial coverage
as well as lower initial overlap.

6 CONCLUSIONS
In this paper we explored the possibility of employing an RL agent
for the area coverage task and demonstrated that the DQN-PER
based RL agent achieved coverage with lower overlap when com-
pared with well known online coverage algorithm, BA* and Spiral-
STC . Furthermore, RL agents based on DQN-PER substantially
reduced the sample complexity, making it amenable for deployment
on real-world robots. Our experimental studies in the grid based
environments as well as Gym-Gazebo simulator have demonstrated
the practicability while deploying trained RL agents in unseen en-
vironments. Taking into consideration the fact that information
regarding the area of the environment may not be available, we
made further modifications to the state representation which led to
an area agnostic DQN agent. The ability of the RL agent to general-
ize across different obstacle configurations was validated through
an extensive series of experiments on both grid based maze en-
vironments and gym-gazebo simulator. The results in the maze
and Gym-Gazebo environments achieved similar performance with
regard to sample complexity, average coverage and overlap.

In our future work, we aim to validate the performance of the
learning-based algorithms on a physical hardware robot as well as
extend these algorithms to environments with dynamic obstacle(s)
and enable the robot to manage battery charging based on the
power status.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Guohua Ren∗ , Olimpiya Saha∗ , Javad Heydari∗ , Viswanath Ganapathy†, Mohak Shah

(a) (c) (e)

(b) (d) (f)

Figure 5: Learning from scratch: (a) - (d) respectively on Envs 1 − 4 from Figure 4 (a) - (d). Transfer learning: (e) - (f): Coverage
and overlap in Env-3 (Figure 4)

REFERENCES
[1] E. U. Acar, H. Choset, and Ji Yeong Lee. 2006. Sensor-based coverage with

extended range detectors. IEEE Transactions on Robotics 22, 1 (Feb. 2006), 189–
198.

[2] Ercan U. Acar, Howie Choset, Alfred A. Rizzi, Prasad N. Atkar, and Douglas Hull.
2002. Morse Decompositions for Coverage Tasks. The International Journal of
Robotics Research 21, 4 (2002), 331–344.

[3] Esther M. Arkin, Sándor P. Fekete, and Joseph S.B. Mitchell. 2000. Approximation
algorithms for lawn mowing and milling. Computational Geometry 17, 1 (2000),
25 – 50.

[4] Tauã Cabreira, Lisane Brisolara, and Paulo R Ferreira. 2019. Survey on Coverage
Path Planning with Unmanned Aerial Vehicles. Drones 3, 1 (2019), 4.

[5] Wei Chen and Dean Zhao. 2013. Path planning for spray painting robot of
workpiece surfaces. Mathematical Problems in Engineering 2013 (2013).

[6] Y. Choi, T. Lee, S. Baek, and S. Oh. 2009. Online complete coverage path planning
for mobile robots based on linked spiral paths using constrained inverse distance
transform. In IEEE/RSJ International Conference on Intelligent Robots and Systems.
5788–5793.

[7] Howie Choset and Philippe Pignon. 1998. Coverage path planning: The boustro-
phedon cellular decomposition. In Field and service robotics. Springer, 203–209.

[8] Nils Einecke, Jörg Deigmöller, Keiji Muro, and Mathias Franzius. 2018. Boundary
Wire Mapping on Autonomous Lawn Mowers. In Field and Service Robotics.
Springer, 351–365.

[9] Y. Gabriely and E. Rimon. 2001. Spanning-tree based coverage of continuous
areas by a mobile robot. In Proc. IEEE International Conference on Robotics and
Automation (ICRA), Vol. 2. 1927–1933 vol.2.

[10] Yoav Gabriely and Elon Rimon. 2003. Competitive on-line coverage of grid
environments by a mobile robot. Computational Geometry 24, 3 (2003), 197–224.

[11] Enric Galceran and Marc Carreras. 2013. A survey on coverage path planning
for robotics. Robotics and Autonomous systems 61, 12 (2013), 1258–1276.

[12] E. Gonzalez, O. Alvarez, Y. Diaz, C. Parra, and C. Bustacara. 2005. BSA: A
Complete Coverage Algorithm. In Proc. IEEE International Conference on Robotics
and Automation (ICRA). 2040–2044.

[13] Susan Hert, Sanjay Tiwari, and Vladimir Lumelsky. 1999. A Terrain-Covering
Algorithm for an AUV. Autonomous Robots 3 (04 1999).

[14] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. 2018.
Rainbow: Combining improvements in deep reinforcement learning. In Thirty-
Second AAAI Conference on Artificial Intelligence.

[15] Paulo A Jimenez, Bijan Shirinzadeh, Ann Nicholson, and Gursel Alici. 2007.
Optimal area covering using genetic algorithms. In 2007 IEEE/ASME international
conference on advanced intelligent mechatronics. IEEE, 1–5.

[16] Y. Lin, C. Ni, N. Lei, X. David Gu, and J. Gao. 2017. Robot Coverage Path planning
for general surfaces using quadratic differentials. In IEEE International Conference
on Robotics and Automation (ICRA). 5005–5011.

[17] R. Mannadiar and I. Rekleitis. 2010. Optimal coverage of a known arbitrary
environment. In IEEE International Conference on Robotics and Automation (ICRA).
5525–5530.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[19] Veerajagadheswar Prabakaran, Mohan Rajesh Elara, Thejus Pathmakumar, and
Shunsuke Nansai. 2018. Floor cleaning robot with reconfigurable mechanism.
Automation in Construction 91 (2018), 155–165.

[20] Sungsoo Rhim, Jae-Chang Ryu, Kwang-Ho Park, and Soon-Geul Lee. 2007. Perfor-
mance evaluation criteria for autonomous cleaning robots. In 2007 International
Symposium on Computational Intelligence in Robotics and Automation. IEEE, 167–
172.

[21] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2015. Prioritized
experience replay. arXiv preprint arXiv:1511.05952 (2015).

[22] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[23] Sebastian Thrun and Anton Schwartz. 1993. Issues in using function approxima-
tion for reinforcement learning. In Proceedings of the 1993 Connectionist Models
Summer School Hillsdale, NJ. Lawrence Erlbaum.

[24] HoangHuuViet, Viet-HungDang, SeungYoonChoi, and Tae ChoongChung. 2015.
BoB: an online coverage approach for multi-robot systems. Applied Intelligence
42, 2 (01 Mar 2015), 157–173.

[25] Hoang Huu Viet, Viet-Hung Dang, Md Nasir Uddin Laskar, and TaeChoong
Chung. 2012. BA∗: an online complete coverage algorithm for cleaning robots.
Applied Intelligence 39, 2 (dec 2012), 217–235.

[26] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Reinforcement Learning Algorithms
	3.1 Overview
	3.2 DQN and its Variants

	4 DQN Agent for Coverage in Unknown Environments
	4.1 Reward Function
	4.2 State Representation
	4.3 Architecture of the RL Agent

	5 Experiments
	5.1 Evaluation Methodology
	5.2 Simulations in Maze Environments
	5.3 Simulations in Gazebo

	6 Conclusions
	References

