Advances in Distributed Video Analytics

Artifical Intelligence of Things, Singapore

VIJAYKRISHNAN NARAYANAN THE PENNSYLVANIA STATE UNIVERSITY SUPPORTED IN PART BY NSF, CRISP AND CBRIC

Object Recognition on Distributed Camera System: Limitations

IoT device limitations: Energy and power constraints

Communication cost bottleneck

Losing context information

Distributed Intelligence

PEDRA (Arijit Raychowdhury, CBRIC)

Edge-Cloud Partitioned

Eco-Friendly Pollinator Trackers

In Store Camera Networks

Visual Assistance System

Which views are most useful to recognize object ? How many views do we need?

1

Tradeoff - Accuracy & Communication Costs

	Test # views	Accuracy
	1	70.0%
	2	71.2%
	4	91.1%
>	8	93.1%

8x Comm. Traffic increase before feature aggregation (pooling)

Significant communication traffic incurs on the side of back-end feature aggregation

*Examples are reproduced from Table 2, Yifan Feng, et al. "GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition," CVPR, 264–272, 2018.

Leveraging Entropy for Context-Awareness

• Against DNN model $y = P(x; \Theta)$, Entropy can be defined as

Selective Feature Normalization

Context-Aware Multi-View Camera System

Varying Resolution of Transmitted Image/Feature

5X reduction in communication energy for ~2% loss in accuracy

Selective Transmission of High Resolution Images

Computing Demands - Visual Analytics System

Latency-Storage Tradeoff

Efficient algorithms, Hardware Acceleration, High density memory/storage, Compute near memory/storage, 3D Integration

Compute-Memory-Storage Hierarchy

SRAM Based Accelerators

The data movement cost is majorly spent on transporting the data from sub-array port to the Bank's port.

Processing in Memory Approaches

- Analog based PIM: Requires costly ADCs, and very prone to PVT variations.
- Digital based PIM: Requires changes to the tightly built custom-layout sub-arrays. Repeated bitline (dis)charging used for the compute.

Goal: Place compute logic near each sub-array without any perturbation to the subarray.

- Multiplier based logics are area expensive and energy consuming.
- Look-up table-based compute engines requires lesser area and are more energy efficient.

Look-Up Table based Energy Efficient Processing in Cache Support for Neural Network Acceleration

Current in-memory solutions requires frequent accesses to the highly parasitic bitlines which incurs high energy penalty. Our solution using reduced access rows within the sub-array in conjunction with compute engine eliminates the energy costs.

Collaboration with Intel Labs

LUT Functions: Multiplication

Naïve multiply LUT requires 256B of entries for 4-bit operands. With simple data shifting optimizations[6], the even number operands can be computed, thereby reducing the LUT size to 49Bytes.

LUT Functions: Activation Functions

The activation functions like exponent, tanh, sigmoid are supported with the piecewise approximation method[7].

LUT size: 34 entries for 2-bit fractional part

Systolic Dataflow within the Banks

To enable systolic dataflow within the banks, simple switch routers are sandwiched between the sub-arrays. The control signals to these routers are controlled by the BCEs.

Performance Evaluation

Main benefits of BFree over state-of-the-art Neural Cache for Inception V3:

- Minimal perturbation to the sub-array, thereby running at higher frequency.
- Less data movement overheads due to systolic flow.

Our Bitline-Free architecture performs 1.72x faster and 3.14x energy efficient than the state-of-the-art Bitline based computing – Neural Cache while running Inception-V3.

LSTM

Matrix-vector multiplication, tanh and sigmoid BFree performs 2065x, 224x faster and 3100x, 443x energy efficient than CPU and GPU, respectively.

Transformer Network

Matrix-matrix multiplication, matrix addition, normalisation, tanh, sigmoid, softmax. BFree shows 101x, 3x speed up and 91x, 11x energy efficiency than CPU and GPU, respectively for BERT-Base model.

Visual Analytics – Compressed Domain Processing

Skeleton-based Human Action Recognition

Understanding the 3D World from 2D

- Understanding the 3D world from monocular vision has always been an area of great interest.
- Standard RGB 3 channel images do not possess the depth of field information
- RGB data in presence of adequate depth information can generate accurate 3D models

- 2. Fan, Haoqiang, et al. "A point set generation network for 3d object reconstruction from a single image." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
- 3. Groueix, Thibault, et al. "A papier-mâché approach to learning 3d surface generation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

^{1.} Choy, Christopher B., et al. "3d-r2n2: A unified approach for single and multi-view 3d object reconstruction." European conference on computer vision. Springer, Cham, 2016.

Point Cloud Generation from RGB Image and Dense Depth

Existing Depth Sensors Provide Sparse Depth Data

Sparse Depth Map in the Night

Problem:

- 1. These sensors provides sparse depth data both temporally and spatially
- 2. The LIDAR sensor provides the 3D spatial information at a low frequency ~ 20Hz [2]
- 3. Moreover, the obtained depth information is sparse e.g., 64 vertical lines in the vertical direction [1]

1. Liu, Haojie, et al. "Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation and Spatial Supervision." arXiv preprint arXiv:2006.11481 (2020).

2. Tang, Jie, et al. "Learning guided convolutional network for depth completion." *IEEE Transactions on Image Processing* 30 (2020): 1116-1129.

Existing Depth Sensors Provide Sparse Depth Data

Sparse Depth Map in the Night

Problem:

- 1. These sensors provides sparse depth data both temporally and spatially
- 2. The LIDAR sensor provides the 3D spatial information at a low frequency ~ 20Hz [2]
- 3. Moreover, the obtained depth information is sparse e.g., 64 vertical lines in the vertical direction [1]

1. Liu, Haojie, et al. "Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation and Spatial Supervision." arXiv preprint arXiv:2006.11481 (2020).

2. Tang, Jie, et al. "Learning guided convolutional network for depth completion." IEEE Transactions on Image Processing 30 (2020): 1116-1129.

Feature Guided Directed Sampling improves Dense Depth Prediction

Examples of Recovered Depth

Event-based Sensors and Data

HAR using Event Data + SNNs

SNN acc. vs frame duration (ms)

Normal ANN-SNN conversion is noisy, with non-uniform spike rate
→ accuracy losses

- Near lossless conversion can be achieved by stream-lining the spikes.
- We propose a delayed firing strategy to achieve better accuracy with fewer Ops (denoted in purple) in both figs.

32

Thank you