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Object Recognition on Distributed Camera System: Limitations

IoT device limitations: Energy 
and power constraints

Communication cost  bottleneck

Losing context information



Distributed Intelligence

PEDRA (Arijit Raychowdhury, CBRIC)CloudHub
Edge

Peer to Peer

Edge-Cloud Partitioned






Eco-Friendly Pollinator Trackers

Camera 1 Camera 2

Camera 3



In Store Camera Networks
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Visual Assistance System  



Which views are most 
useful to recognize 
object ?
How many views do we 
need?



Tradeoff - Accuracy & Communication Costs

Test # views Accuracy

1 70.0%

2 71.2%

4 91.1%

8 93.1%

*Examples are reproduced from Table 2,
Yifan Feng, et al. “GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition,” CVPR, 264–272, 2018.

8x Comm. Traffic increase
before feature aggregation (pooling)

Significant communication traffic incurs
on the side of back-end feature aggregation



Leveraging Entropy for Context-Awareness

• Against DNN model 𝑦𝑦 = 𝑃𝑃 𝑥𝑥;Θ ,
Entropy can be defined as

�
𝑐𝑐
𝜎𝜎 −𝑦𝑦𝑐𝑐 log 𝑦𝑦𝑐𝑐 + 𝜀𝜀

Low entropy

High likelihood toward
distribution of dataset



Selective Feature Normalization

• Feature aggregation in wavg
• ∑𝑖𝑖

𝛿𝛿𝑖𝑖
∑𝜙𝜙 𝛿𝛿𝜙𝜙

𝑋𝑋𝑖𝑖 (skip 𝑋𝑋𝑖𝑖 if 𝛿𝛿𝑖𝑖 = 0)
• How to give importance?

• 𝛿𝛿 = max �1 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+𝜌𝜌) − 𝜇𝜇, 0
• If likelihood ≤ 𝜇𝜇,

then signal back-end to
zero importance.

Feature

If likelihood ≤ 𝜇𝜇, then
do not propagate features

• If importance is 0, 
then skip 
computation

• Otherwise, 
accumulate features 
with respect to 
normalized 
importance

Front-end
nodes

Back-end
governor



Context-Aware Multi-View Camera System

1. Likelihood estimation from entropy
2. Average pooling based on Likelihood weights in feature 

aggregation

Communication cost reduction by a factor of 
3X, while achieving high accuracy

Achieve  8.5%–13.4% accuracy recovery against 
a large portion of camera failures






Varying Resolution of Transmitted Image/Feature

ESRGAN

5X reduction in communication energy 
for ~2% loss in accuracy
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Selective  Transmission of High Resolution Images
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Positional Embedding

Crop pruning 
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Computing Demands - Visual Analytics System

Ingest EngineVideo
Point Cloud

Query Engine

Decoder Lightweight 
DNNs

Query Parser Query Plan Execution

Storage Engine

Query

Raw Video
(Blob)

Meta Data
(RDBMS) Cost Models

DNNs

GNNs

BERT

ISP

Training Support
Data Augmentation
2D-3D, Point Clouds
Incremental Training

Training
Proactive Query 
Pre-processing
Caching

PIM Operations
Meta Data

Kernels

For a 2-minute video, video ingestion – 10 secs, query-based retrieval – 600 secs 
(Intel Xeon)

Need 1000x acceleration to support real-time processing



Latency-Storage Tradeoff

Compressed Raw Features

Data
1x 50x 1000x

Query Execution Time1000x 50x 1x
Efficient algorithms, Hardware Acceleration, High density memory/storage,

Compute  near memory/storage,  3D Integration
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Compute-Memory-Storage Hierarchy
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L1

L1

L1

L1

L2

L2
L3

DRAM DRAM DRAM

DRAM DRAM DRAM

MC

RRAM RRAM RRAM

ADC

MC

Near Mem Compute
CPU cores – DRAM Bank

200x benefits

FLASH FLASH
FLASH FLASH

FLASH FLASH
FLASH FLASH

FLASH
FLASH

FLASH
FLASH

SC

DRAM

In Mem Compute
Analog and Neuro Computing

Energy Harvesting
Content-based Retrieval

Graphs DNN

Visual Analytics
500x to 2000x benefits

Near Storage Compute
LUT near Flash Chips

Visual Analytics

DNN

10000x benefits

CPU
Cache Main Memory Persistent Memory Storage

Multi-dimensional 
Caches

In Mem Compute
Content-based Retrieval

In Mem Sorting

M3D-Caches

Compute Support, 50x benefits 

LUT near 
sub-array
100x 
benefits

FPGA
ASIC

Sensors

Computer 
Vision

DNN



SRAM Based Accelerators

The data movement cost is majorly spent on transporting the 
data from sub-array port to the Bank’s port.

Cost of sub-array access Cost of interconnect

48.9 51.1

80.7

19.3

Computing in-SRAM

This stresses the need for 
computation in next level memory, 

i.e., across different memory 
hierarchy. 

Computing within-SRAM alleviates the 
data movement costs between the 
logic and cache. But, suffers from data 
movement between DRAM and 
SRAM.

In-SRAM 
Computation

Loading 
from 
DRAM

Latency split-up executing 
Inception-V3

Energy split-up



Processing in Memory Approaches

Analog based PIM: Requires costly ADCs, and very prone to PVT variations.

Digital based PIM: Requires changes to the tightly built custom-layout sub-arrays. 
Repeated bitline (dis)charging used for the compute.

Goal: Place compute logic near each sub-array without any perturbation to the sub-
array.

Multiplier based logics are area expensive and energy consuming.

Look-up table-based compute engines requires lesser area and are more energy 
efficient.









Look-Up Table based Energy Efficient Processing in Cache Support for Neural Network Acceleration 

Bitline free (BFree) Compute engine (BCE) is 
attached to each Sub-array  

With LUT-
based

compute 
engine

SRAM Organization

Current in-memory solutions requires frequent accesses to the highly parasitic bitlines which incurs high
energy penalty. Our solution using reduced access rows within the sub-array in conjunction with
compute engine eliminates the energy costs.

Collaboration with Intel Labs



LUT Functions: Multiplication

Naïve multiply LUT requires 256B of entries for 4-bit operands. With simple data shifting optimizations[6], the 
even number operands can be computed, thereby reducing the LUT size to 49Bytes. 



LUT Functions: Activation Functions

LUT size: 34 entries for 2-bit fractional part  

The activation functions like exponent, 
tanh, sigmoid are supported with the 
piecewise approximation method[7].

ta
nh



Systolic Dataflow within the Banks

To enable systolic dataflow within the banks, simple switch routers are sandwiched between the sub-arrays. The 
control signals to these routers are controlled by the BCEs.



Performance Evaluation

Our Bitline-Free architecture performs 1.72x faster and 3.14x energy efficient than the state-of-the-art Bitline 
based computing – Neural Cache while running Inception-V3.

Main benefits of BFree over state-of-the-art Neural Cache for Inception V3:

• Minimal perturbation to the sub-array, thereby running at higher frequency.

• Less data movement overheads due to systolic flow. 

LSTM
Matrix-vector multiplication, tanh and sigmoid 
BFree performs 2065x, 224x faster and 3100x, 443x energy efficient than CPU and GPU, respectively.

Transformer Network
Matrix-matrix multiplication, matrix addition, normalisation, tanh, sigmoid, softmax.
BFree shows 101x, 3x speed up and 91x, 11x energy efficiency than CPU and GPU, respectively for BERT-Base model.



Visual Analytics – Compressed Domain Processing
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Pose Estimation
(CNN on compressed domain)

Action Recognition
(Compact Transformer)

Skeleton-based Human Action Recognition

Compressed
Video Decode Compressed

Video

I-Frame

P-Frame

B-Frame

MVsCNNs CNNs
300 secs

50 secs
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Understanding the 3D World from 2D
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RGBDepth 3D Point Cloud

Point Set
Generation

3D-R2N2 PointSetGen

AtlasNet

1. Choy, Christopher B., et al. "3d-r2n2: A unified approach for single and multi-view 3d object reconstruction." European conference on computer vision. Springer, Cham, 2016.
2. Fan, Haoqiang, et al. "A point set generation network for 3d object reconstruction from a single image." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
3. Groueix, Thibault, et al. "A papier-mâché approach to learning 3d surface generation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

 Understanding the 3D world from monocular vision has always been an area of great interest.
 Standard RGB 3 channel images do not possess the depth of field information
 RGB data in presence of adequate depth information can generate accurate 3D models 








Point Cloud Generation from RGB Image and Dense Depth
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Depth

DepthRGB Image

RGB Image Artificial
Neural Nets

3D Pointcloud
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Existing Depth Sensors Provide Sparse Depth Data

1. LIDAR
2. Time of Flight
3. RGBD Camera

Problem:
1. These sensors provides sparse depth data both temporally and spatially
2. The LIDAR sensor provides the 3D spatial information at a low frequency ~ 20Hz [2]
3. Moreover, the obtained depth information is sparse e.g., 64 vertical lines in the vertical direction [1]

RGB Image

Sparse Depth Map in the Night
Sparse Depth Map

1. Liu, Haojie, et al. "Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation and Spatial Supervision." arXiv preprint arXiv:2006.11481 (2020).
2. Tang, Jie, et al. "Learning guided convolutional network for depth completion." IEEE Transactions on Image Processing 30 (2020): 1116-1129.

Depth Sensors
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Existing Depth Sensors Provide Sparse Depth Data

1. LIDAR
2. Time of Flight
3. RGBD Camera

Problem:
1. These sensors provides sparse depth data both temporally and spatially
2. The LIDAR sensor provides the 3D spatial information at a low frequency ~ 20Hz [2]
3. Moreover, the obtained depth information is sparse e.g., 64 vertical lines in the vertical direction [1]

RGB Image

Sparse Depth Map in the Night
Sparse Depth Map

1. Liu, Haojie, et al. "Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation and Spatial Supervision." arXiv preprint arXiv:2006.11481 (2020).
2. Tang, Jie, et al. "Learning guided convolutional network for depth completion." IEEE Transactions on Image Processing 30 (2020): 1116-1129.

Depth Sensors
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Feature Guided Directed Sampling improves Dense Depth Prediction 

Examples of Recovered Depth

RGB Image Dense Depth

Sampled Sparse DepthExtracted SURF Features



Event-based Sensors and Data

Predicted gesture



HAR using Event Data + SNNs
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Event 
data from 

DVS

Construct 
'event’ 
frames

Train 
ANN via 

back-
prop

Convert 
ANN to 
SNN

SNN 
inference 

on 
‘events’

Hand wave Arm roll Air Drum Arm rotation

• Normal ANN-SNN conversion is noisy, with non-uniform spike rate 
 accuracy losses

• Near lossless conversion can be achieved by stream-lining the 
spikes.

• We propose a delayed firing strategy to achieve better accuracy 
with fewer Ops (denoted in purple) in both figs.
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Thank you
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