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Object Recognition on Distributed Camera System: Limitations
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In Store Camera Networks
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Which views are most
useful to recognize

object ?
How many views do we
need?




Tradeoff - Accuracy & Communication Costs

70.0%
71.2%
91.1%

\ 8 93.1%

8x Comm. Traffic increase
before feature aggregation (pooling)

~ NN

Significant communication traffic incurs
on the side of back-end feature aggregation

*Examples are reproduced from Table 2,
Yifan Feng, et al. “GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition,” CVPR, 264—-272, 2018.



Leveraging Entropy for Context-Awareness

e Against DNN model y = P(x; 0),

Entropy can be defined as
g Trend against Imagenet Dataset (GoogLeNet)
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Selective Feature Normalization

e How to give importance? * Feature aggregation in wavg
5 . e
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Context-Aware Multi-View Camera System

front-end feature extractors

feature
aggregation

global
prediction
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M :Likelihood Estimation

1. Likelihood estimation from entropy
2. Average pooling based on Likelihood weights in feature
aggregation

bottle

bowl
car

chair

(-

-

—1

O
(]

Communication cost reduction by a tfactor ot
3X, while achieving high accuracy
.

" Achieve 8.5%—13.4% accuracy recovery against
_a large portion of camera failures
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'Varying Resolution of Transmitted Image/Feature
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5X reduction in communication energy
for 2% loss in accuracy
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“Selective Transmission of High Resolution Images

MLP 4 Class
Transformer Encoder Laysan Albatross
Head Least Auklet
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Computing Demands - Visual Analytics System

Video Ingest Engine Query Engine
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' Latency-Storage Tradeoff
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Compute-Memory-Storage Hierarchy

Main Memory Persistent Memory Storage
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500x to 2000x benefits



SRAM Based Accelerators

Loading
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The data movement cost is majorly spent on transporting the
data from sub-array port to the Bank’s port.




Processing in Memory Approaches

X Analog based PIM: Requires costly ADCs, and very prone to PVT variations.

X Digital based PIM: Requires changes to the tightly built custom-layout sub-arrays.
Repeated bitline (dis)charging used for the compute.

Goal: Place compute logic near each sub-array without any perturbation to the sub-
array.
¢ Multiplier based logics are area expensive and energy consuming.

v/ Look-up table-based compute engines requires lesser area and are more energy
efficient.



Look-Up Table based Energy Efficient Processing in Cache Support for Neural Network Acceleration

SRAM Organization Bitline free (BFree) Compute engine (BCE) is
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Current in-memory solutions requires frequent accesses to the highly parasitic bitlines which incurs high
energy penalty. Our solution using reduced access rows within the sub-array in conjunction with
compute engine eliminates the energy costs.

Collaboration with Intel Labs



LUT Functions: Multiplication

Operand | 3, 54 74 94 11, 13, 15,

34 Qd 15d 21d 27d 33.1 39d 45:! o Initialization L Computation L ‘Writeback__

o 5 15d 25d 35d 45d 55d 65d 75d E Cycle 0 i Cycle 1 i Cycle 2 i Cycle 3 i Cycled ; Cycle 5 | Cycle 6
Fetch M1 Add 28

9, | 27, | 45, | 63, | 81, | 99, | 117, | 135, | | decodeCE N b"p‘“ . /*w g |

11, | 33, | 55, | 77, | 99, | 121, | 143, | 165, 5 ! | <L pel6s S Selidsh .jt 5 ;

13, | 39, | 65, | 91, [ 117, | 143, | 169, | 195, | ! 7)s 15 '

; Sel :7 Wi h
15, | 45, | 75, | 105, | 135, | 165, | 195, | 225, | ! A Ll | M B ’<L Flory ><¢\ddgr 169 J&tt".':.ﬂte>
M1 M2 :Tlme

N N N N N7 N N
7, | 21, [ 35, | 49, | 63, | 77, | 91, || 105, |

o Use operand A to generate the address e

o Operand B as select signal m

Naive multiply LUT requires 256B of entries for 4-bit operands. With simple data shifting optimizations[6], the
even number operands can be computed, thereby reducing the LUT size to 49Bytes.



LUT Functions: Activation Functions
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Systolic Dataflow within the Banks
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To enable systolic dataflow within the banks, simple switch routers are sandwiched between the sub-arrays. The
control signals to these routers are controlled by the BCEs.



Performance Evaluation

:;‘1 I BFree
= 1.2 mNC
2.
;
°"‘I I | | | 11 I
s In Bn B | 1
5¢ 6a 6be 7a

6c
Mixed Layers

Main benefits of BFree over state-of-the-art Neural Cache for Inception V3:
e  Minimal perturbation to the sub-array, thereby running at higher frequency.
e Less data movement overheads due to systolic flow.
Our Bitline-Free architecture performs 1.72x faster and 3.14x energy efficient than the state-of-the-art Bitline

based computing — Neural Cache while running Inception-V3.

LSTM
Matrix-vector multiplication, tanh and sigmoid
BFree performs 2065x, 224x faster and 3100x, 443x energy efficient than CPU and GPU, respectively.

Transformer Network

Matrix-matrix multiplication, matrix addition, normalisation, tanh, sigmoid, softmax.
BFree shows 101x, 3x speed up and 91x, 11x energy efficiency than CPU and GPU, respectively for BERT-Base model.



O
Visual Analytics — Compressed Domain Processing

Skeleton-based Human Action Recognition

50 secs

300 secs

/ Action 10: clapping Action 1: drink water Action 9: standing up (from sitting position)\
1.00 1.00 1.00
0.75 0.75 0.75
0.50 0.50 0.50

Pose Estimation

@NN on compressed domainj

Action Recognition
(Compact Transformer)
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Understanding the 3D World from 2D

Point Set
Generation

AtlasNet

Depth RGB 3D Point Cloud

¢ Understanding the 3D world from monocular vision has always been an area of great interest.
¢ Standard RGB 3 channel images do not possess the depth of field information
*¢ RGB data in presence of adequate depth information can generate accurate 3D models

1. Choy, Christopher B., et al. "3d-r2n2: A unified approach for single and multi-view 3d object reconstruction." European conference on computer vision. Springer, Cham, 2016.
2. Fan, Haogiang, et al. "A point set generation network for 3d object reconstruction from a single image." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
3. Groueix, Thibault, et al. "A papier-maché approach to learning 3d surface generation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
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Point Cloud Generation from RGB Image and Dense Depth
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Existing Depth Sensors Provide Sparse Depth Data

Depth Sensors

1. LIDAR

2. Time of Flight
3. RGBD Camera

Sparse Depth Map
Sparse Depth Map in the Night

Problem:

1. These sensors provides sparse depth data both temporally and spatially

2. The LIDAR sensor provides the 3D spatial information at a low frequency ~ 20Hz 2]

3. Moreover, the obtained depth information is sparse e.g., 64 vertical lines in the vertical direction [1]

1. Liu, Haojie, et al. "Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation and Spatial Supervision." arXiv preprint arXiv:2006.11481 (2020).
2. Tang, lie, et al. "Learning guided convolutional network for depth completion." IEEE Transactions on Image Processing 30 (2020): 1116-1129.

28



Existing Depth Sensors Provide Sparse Depth Data

Depth Sensors

1. LIDAR

2. Time of Flight
3. RGBD Camera

Sparse Depth Map
Sparse Depth Map in the Night

Problem:

1. These sensors provides sparse depth data both temporally and spatially

2. The LIDAR sensor provides the 3D spatial information at a low frequency ~ 20Hz 2]

3. Moreover, the obtained depth information is sparse e.g., 64 vertical lines in the vertical direction [1]

1. Liu, Haojie, et al. "Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation and Spatial Supervision." arXiv preprint arXiv:2006.11481 (2020).
2. Tang, lie, et al. "Learning guided convolutional network for depth completion." IEEE Transactions on Image Processing 30 (2020): 1116-1129.

29



Feature Guided Directed Sampling improves Dense Depth Prediction

50 100 150 2 ' 50 100 150 200 250

RGB Image Dense Depth

0 50 100 150 200

Extracted SURF Features Sampled Sparse Depth




Event-based Sensors and Data

Object

Input Spikes

Spiking Neural
Network

Frame based sensor

Frames per second

EVE‘ﬂtS (.I: Vi, ti, pz)

Dynamic vision sensor

Predicted gesture



HAR using Event Data + SNNs

SNN acc. vs frame duration (ms)
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frames © 0.6
§ 0.4
0.2
0
100' 200' 400' 600’ 800'
B SNN acc. (plain) B SNN acc. (aggregated)
SNN acc. (1.2-1.6s) SNN acc. (clip level)
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#OPs (SNN/ANN) vs dataset
* Normal ANN-SNN conversion is noisy, with non-uniform spike rate g j
- accuracy losses S 3
* Near lossless conversion can be achieved by stream-lining the % 5 | ]
spikes. £ 0 4 A
* We propose a delayed firing strategy to achieve better accuracy <0 n :
with fewer Ops (denoted in purple) in both figs. 100ms 200ms  400ms 600ms  800ms
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