Indoor Location Sensing: Principals, Potentials, and Practice

JIE LIU HARBIN INSTITUTE OF TECHNOLOGY (SHENZHEN) jieliu@hit.edu.cn

"The light of navigation", Dutch sailing handbook, 1608, showing compass, hourglass, sea astrolabe, terrestrial and celestial globes, divider, Jacob's staff and astrolabe.

Modern Location Sensing Proliferation

Paradigms of Location Sensing

Geometric-based: estimate locations directly from geometric measurements

• Experience-based: estimate locations from features collected from the past

Tracking-based: estimate locations from past locations and motion

1. Geometric Based: "It must be here."

"Determine mobile device location using distance and/or orientation measurements to multiple anchor nodes with known location"

• Distance-Based: Trilateration

• Angle-Based: Triangulation

Measurements

- Questions:
 - What signal to use for measurements?
 - How to measure distances / orientations?
 - How to compute location from these measurements
 - How to determine (configure) anchor node locations?

Distance Measurement Primitives

Orientation from Difference in Time of Arrival

Тx

• When d >> L
$$Cos\theta \approx \frac{d_2 - d_1}{L}$$

• Can be calculated from Time Difference Of Arrival (TDOA) of the signals

Distance Measurement Techniques

- Audio based: audible and ultrasound
 - Advantages
 - Slow speed : easy to measure propagation time
 - Generation and detection using speakers and mics
 - Disadvantages
 - Strict line of sight blocked by most physical materials
 - Lack of widely deployed infrastructure
 - Interfere with hearing (audible: humans, ultrasound : pets)

• RF based: all kinds of frequencies

- Advantages
 - Easy to deploy infrastructure
 - Better penetration than audio
- Disadvantages
 - High propagation speed: difficult to measure time-offlight

- Active Light based: laser, IR
 - Advantages
 - Can be very accurate using ToF
 - Disadvantages
 - Can be expensive
 - Needs direct line of sight

Camera based

- Advantages
 - Can measure distances and angles at once
 - Price is getting cheap
 - Range is limited due to resolutions
- Disadvantages
 - Need to calibrate
 - Higher computational cost than 1d approaches
 - Needs direct line of sight

2. Experience-based: "I have been (near) here!"

• Fundamentally, it is a signature recall approach.

• Build features mapping F(V) = L, that $\min\{D(L, F(V))\}$

• Localization: For given measurement \hat{V} , find $\hat{L} = F(\hat{V})$

Indoor Location Dependent Signatures/Features

Deployed Infrastructure	Bluetooth/Zigbee Beacons Magnetic Beacons RFID Modulated Light	Ground Vibration Sparse Set of Beacons
(Nearly) Ambient	Cell Network WiFi Sound FM Radio Photos	Earth Magnetic Field Turns and Stairs Video
	Instant	Trajectory

3. Tracking-based: "How I have moved"

- Start with a known location (t_1)
- Measure motion over time($t_1 \sim t_2$)
- Estimate new location (t_2)
- Repeat

4. Sensor Fusion: Combining Two or More Approaches

- Two or more types of complementary signals (modalities):
 - To measure distances: e.g. Cricket (RF + Ultrasound)
 - To compensate signatures: e.g. FM + WiFi
- Absolute location with motion tracking: E.g.
 - WiFi + step counting
 - Markers + visual odometry
- Location/movement + side knowledge : E.g.
 - Loop closure
 - Map constraints

Cricket Indoor Location System

- Cricket:
 - Anchor nodes \rightarrow beacons
 - Mobile node \rightarrow Listener
- Computes distance by TDOF of RF and US
- Multipath mitigation: first US pulse to measure distance
 - US signals die down after 50mS

Nissanka Priyantha, Anit Chakraborty and Hari Balakrishnan, "The Cricket Location Support System", MobiCom 2000

FM+WiFi Based Indoor Localization

Wireless Signal Fingerprint

Complementary Roles of WiFi and FM

Fusing Motion with Maps

- WiFi Signatures
- IMU based direction & step counting
- Sequential Bayesian updates
- Particle filters
- Map constraints

Potentials: Indoor location examined

Lots of Publications, Very Little Comparison

IEEE.org IEEE Xplore IEEE-S	A IEEE Spectrum	More Sites		SUBS	CRIBE C	Cart Create Account	Personal Sign In
IEEE Xplore® Brows	e ✔ My Settings ✔	Help 🗸	Institutional Sign In				IEEE
	•	Indoor Locat	tion			Q	
					ADVANCED SE	EARCH	
Search within results Q				Per Page: 25	i ∣ Export	 Set Search Alerts 	s Search History
Showing 1-25 of 8,175 for Inc ▼ Filters Applied: 1975 - 2021	loor Location× ×						
□ Conferences (6,839)	Journals (1,142)	Early Access A	rticles (91)	🗆 Maga	azines (72)	
□ Books (21)	Standards	\$ (8)	□ Courses (2)				
Which on is bette	r? 3m	Sys Locati	tem A ion Accuracy	OR	4m L	Syster ocation	n B Accurac

Microsoft Indoor Location Competitions

- Evaluate and compare technologies from academia and industry in the same, unfamiliar space.
- Bring teams working in this area together in a more effective way.

2014: Berlin 2015

2015: Seattle

2016: Vienna

2017: Pittsburgh

2018: Porto

Microsoft Indoor Location Competitions

2014

2015

• 36 teams signed up, 22 competed

48 teams signed up, 23 competed

Basic Rules

INFRASTRUCTURE FREE

• Pre-deployed 10 WiFi AP for everyone.

INFRASTRUCTURE ASSISTED

• Allow deployment of up to 10 devices

- 8 hours of setup up time
- Unknown evaluation points
- Individually evaluated to prevent interference.

More Craziness

2014 Localization Accuracy

2015 Results

2016: 465m² Evaluation Area, Two Levels

2017: 600m² Evaluation Area - Two Floors

Teams that start with * require initialization.

Naviguy and Ariel Univ. were considered a tie! Ariel University is the winner as Naviguy required initialization while Ariel University did not.

Teams that start with * require initialization. SND Smart Ltd and Yodel Labs are considered a tie!

2020: Indoor Location Competition 2.0

- Completely Virtual, Open Competition
- 30,000 traces from over 200 buildings
- \$10,000 Award
- 1,170 teams participated!
- Best results:Average Location Error < 1.5m

Practice: What's Hard About Indoor Localization

Inaccurate measurements

- Receiving signal phases and amplitudes (higher frequencies and higher bandwidths are better)
- Time synchronization
- Multi-paths fading and reflections
- Missing line of sight
- Environments change over time
 - Setup re-arranged
 - Signal source (beacons) replaced
 - Signal inference
 - Human movements
- Device variations
- Infrastructure cost

Detecting the start of Rx is hard due to "gradual signal build up"

There is NO Single Best Solution

Find the right one, not the best one

- There is a huge variety of signals and techniques for indoor location sensing.
- A pushpin is not the end.
 - Indoor maps
 - Place semantics
 - Adoption paths

Close the Loop with Value Proposition

Acknowledgements

Priyantha

Dimitrios Wang Lymberopoulos

Gerald DeJean

Michel Goraczko

Jacky Shen

Shu

Qiang Xu