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ABSTRACT 

As Artificial Intelligent (AI) technology advances and increasingly 

large amounts of data become readily available via various 

Industrial Internet of Things (IIoT) projects, we evaluate the state 

of the art of predictive maintenance approaches and propose our 

innovative framework to improve the current practice. The paper 

first reviews the evolution of reliability modelling technology in the 

past 90 years and discusses major technologies developed in 

industry and academia. We then introduce the next generation 

maintenance framework - Intelligent Maintenance, and discuss its 

key components. This AI and IIoT based Intelligent Maintenance 

framework is composed of (1) latest machine learning algorithms 

including probabilistic reliability modelling with deep learning, 

(2) real-time data collection, transfer, and storage through wireless 

smart sensors, (3) Big Data technologies, (4) continuously 

integration and deployment of machine learning models, (5) mobile 

device and AR/VR applications for fast and better decision-making 

in the field. Particularly, we proposed a novel probabilistic deep 

learning reliability modelling approach and demonstrate it in the 

Turbofan Engine Degradation Dataset.  

CCS CONCEPTS 

• Artificial intelligence • Machine learning • Real-time systems 

• Distributed computing methodologies • Physical sciences and 

engineering  

KEYWORDS 

Predictive Maintenance, Industrial Internet of Things (IIoT), 

Artificial Intelligent (AI), Machine Learning, Time Series, 

Probabilistic Approach 

ACM Reference format: 

Haining Zheng, Antonio R. Paiva, Chris S. Gurciullo, 2020. Advancing 

from Predictive Maintenance to Intelligent Maintenance with AI and IIoT. 

In AIoT workshop at KDD 2020: The 26 ACM SIGKDD International 

Conference on Knowledge, Aug 22-27, 2020, San Diego, CA, USA 6 pages. 

https://doi.org/xxxxx/yyyyy 

1 Introduction  

Equipment reliability has been a major issue for manufacturers of 

many industries. Based on Aberdeen's independent research of 

unplanned downtime for industrial plants costs $10k to 

$250K/hour which adds up to $50 billion annually. Equipment 

failure is the cause of 42% of this unplanned downtime [1]. While 

reliability technology has been studied intensively in the past 90 

years [2-5], a 2017 survey of 100 manufacturers in the US and 

Europe by Vanson Bourne Global Study shows that 70% of 

companies lack complete awareness of when equipment is due for 

maintenance or upgrade [6]. 

Machine learning [7-9] and the Internet of Things (IoT) [10-12] 

have made significant progress recently and proven successful 

across different industries, including a number of traditional 

applications in the energy industry [13-15] from upstream 

production prediction, midstream transportation optimization, to 

downstream product manufacturing. Equipped with our years of 

experience in the reliability technology domain and knowledge of 

latest AI and IIoT development, we revisit this important yet 

unsolved problem. 

2  Evolution of Reliability Technology 

Reliability technology has gone through four generations as 

illustrated in Figure 1. 

2.1 Reactive Maintenance 

The first generation of maintenance strategy follows a reactive 

approach: only fix it when the equipment is broken. This caused 

tremendous unplanned capacity loss because it is subject to 

availability of repair personnel and more often than not, the asset is 

severely damaged to the point that it needs to be replaced entirely 

which is costly and subject to replacement parts availability. 

Currently it is only applied to inexpensive and easily replaceable 

small assets for which spare parts can be easily kept in stock. 

2.2 Preventive Maintenance  

After World War II, a 2nd generation of maintenance strategies were 

developed, giving rise to preventive maintenance, meaning that 

replacement of equipment is scheduled according to a fixed time 

interval, regardless of the condition. Of course, this approach 

creates a major dilemma for business decision makers: either they 

apply a large safety factor to serve and replace equipment 

frequently which increases maintenance costs, or they face 

situations in which the asset breaks before its expected lifespan 

causing unplanned capacity loss similar to reactive maintenance 

situation. 
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Figure 1: Evolution of Reliability Technology (adapted from 

Moubray [2]). 

2.3 Predictive Maintenance 

As light-weight and fast computers became widely available in the 

1980s, predictive maintenance becomes practical. The goal is to 

preemptively predict equipment failure through data from 

conditional monitoring and computer models. A number of 

reliability technologies were developed in this period. In the 

equipment/asset development phase, Accelerated Testing, Design 

for Reliability and Maintenance, and Design Failure Mode 

Analysis (DFMEA) are important design supporting tools. During 

the project and operational phases, Reliability Centered 

Maintenance (RCM), Reliability-Based Inspection (ReBI), 

Optimum Replacement Time (ORT), and Reliability, Availability, 

and Maintainability (RAM) analysis are commonly used 

approaches. Moreover, Fault Tree Analysis (FTA) and event tree 

analysis (ETA) were developed for failure diagnosis (root cause 

analysis) to identify the main causes of failure of an asset after a 

failure has occurred. Rule-based expert systems were also 

developed in this period. 

An expansion of predictive maintenance is prescriptive 

maintenance which emphases on quantify/predict the effect of 

maintenance decisions before they are made. Its goal is to 

recommend what mitigation or maintenance actions and by when 

they need to be done on an asset. Predictive Maintenance is the 

most prevalent strategy presently. Currently 50% of the 

manufacturers have established continuous improvement teams for 

condition based and RCM activities [1]. 

2.4 Intelligent Maintenance 

While Industry 4.0 is revolutionizing every aspect of industrial 

process and turning what was unimaginable into reality, like real 

time plant-wide optimization and scheduling, manufacturing 

system is becoming increasingly more complex and brings in new 

challenges to maintenance strategy.  

(1) How to implement the AI/Machine learning algorithms 

developed in other fields to manufacturing time series 

data which has complex nonlinear temporal and spatial 

dynamics? 

(2) How to collect data from remote sources that are not con-

nected to the corporate network via wired connections?  

(3) How to effective process and store high frequency data 

without overloading the whole network or data storage? 

(4) How to keep models deployed up to date without causing 

disruptions to production? 

(5) How to allow fast and better decision-making in the field 

without access to laptop or workstation? 

In the next section, we introduce a framework needed to tackle 

these challenges and advance towards Intelligent Maintenance and 

discuss the barriers and opportunities for practical implementation.  

3  Intelligent Maintenance Framework   

This Intelligent Maintenance framework is composed of five 

elements as shown in the yellow colored part of Figure 1 and which 

we will discuss in detail in this section. 

3.1 AI/Machine Learning Applied to Reliability 

3.3.1 Supervised Learning 

Regression and classification are two most common Supervised 

Learning approaches. For equipment failure prediction, a 

regression formulation can be employed to predict when an in-

service machine will fail in the future, so that maintenance can be 

planned in advance. Estimates of Remaining Useful Life (RUL) 

and Time to Failure (TTF) are the most common regression targets. 

Machine learning models employed toward that end include 

Boosted Decision Trees Regression, Random Forest Regression, 

Poisson Regression, and Neural Network-based Regression.  

On the other hand, the same equipment failure prediction problem 

can be framed as classification: either as a Binary Classification to 

predict if an asset will fail within certain time window (e.g., 

30 days), or as a Multi-class Classification to predict if an asset will 

fail in one of different time windows: e.g., fails in window [0, w0] 

days, fails in the window [w0+1, w1] days, … fails in the window 

[wn+1, wn+1] days and not fail within wn+1 days. Logistic Regression, 

Support Vector Machine (SVM), Decision Tree, Random Forrest, 

eXtreme Gradient Boosting (XGBoost) and Neural Network are 
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common algorithms. In addition, classification models can help 

identify failure types. 

3.3.2 Unsupervised Learning 

Anomaly detection is the most common unsupervised learning 

framework for maintenance analytics. It’s used to detect anomalies 

in equipment or system performance or functionality. K-means, 

Isolation Forrest, Local Outlier Factor (LOF) are mostly commonly 

used models. 

3.3.3 Probabilistic approach 

As Data Science practitioners, we are facing significant challenges 

arising from actual manufacturing systems, such as: 

(1) Low accuracy of the maintenance records (labels), and large 

number of undocumented and “unrelated” shutdown and 

maintenance events add noise to the data. 

(2) Run to failure is rare due to the high cost of unplanned capability 

loss. Thus the decision to conduct maintenance is often complex 

and involves substantial experience, engineering, and logistical 

judgement. It could be performed long after the event occurred due 

to lack of parts or before any event as a preventive measure 

(planned maintenance), or sometimes multiple parts are replaced 

together based on opportunity and engineering judgement. This 

further increases difficulty to collect data and interpolate data 

correctly. 

(3) High-degree of nonlinear temporal and multidimensional 

correlations between different types of upstream and downstream 

sensor data. 

(4) The fundamental physics behind the manufacturing system is 

highly nonlinear and non-explicit. 

(5) Process and sensor variables are often non-Gaussian distributed, 

which prevents simple statistical analysis and methods. 

(6) The normal operating condition, which defines the baseline for 

anomaly detection algorithms, is constantly changing and difficult 

to define even with a domain expert’s help. 

Thus, Probabilistic approaches, such as a recently developed 

Bayesian recurrent neural network (BRNN) architecture [16-18], 

can help address a few key aspects of these challenges and serve as 

an example to demonstrate how latest development of machine 

learning can help advance predictive maintenance in section 4.  

3.2 IIoT and Smart Sensors 

The fast development of Industrial IoT helps achieve real-time data 

acquisition and connect isolated data source to corporate network 

with wireless sensors.  Edge computing technology enables model 

building and its deployment at distributed IoT edge devices. 

Nevertheless, even the best-in-class companies, only 30% of them 

have IIoT platforms to collect device data, build smart apps and 

enable industrial scale analytics for application performance 

management while the laggards were at 10% in 2017 [1].  

3.3 Big Data Analytics  

Big Data are usually branded using the famous 3 Vs (Volume, 

Velocity and Variety) – large volume of data streaming at high 

velocity with different varieties of datatypes from relational 

databases to unstructured and semi-structured data.  Hadoop Data 

Lake serves as the primary repository for incoming streams of raw 

data and data is stored in the Hadoop Distributed File System 

(HDFS) after being processed by extract, transform and load (ETL) 

integration jobs. Then the data can be used for advanced analytics 

by running through a processing engine like Spark, which enables 

users to run large-scale data analytics applications across clustered 

systems in parallel.  

While large organizations mostly deployed Big Data system on 

premises, particularly in early days, public cloud platform vendors, 

such as Microsoft Azure, Amazon Web Services (AWS) and 

Google Cloud Platform (GCP) have each obtained significant 

market share. Hybrid Cloud is a recent trend with mixed 

computing, storage, and services environment made up of on-

premises infrastructure, private cloud services, and public cloud 

services with benefits of security, control, agility and cost. 

3.4 Continuous Integration and Continuous Deployment  

Continuous Integration and Continuous Deployment (CICD) helps 

to keep models deployed up to date without causing disruptions to 

production. While Continuous Integration (CI) establishes a 

consistent and automated way to build, package, and test 

applications, Continuous delivery (CD) automates the delivery of 

applications to selected environments (development, testing or 

production). CI/CD automation performs any necessary service 

calls to web servers, databases, and other services and keeps the 

deployed Machine Leaning models up to date without causing 

disruptions to production. 

3.5 Mobility and VR/AR 

Mobile devices provide engineers access to job orders, equipment 

statics, machine schematics and part inventory in real time and 

instantaneous visualizations in the field, such that they can make 

fast and enhanced decisions without traveling back and forth 

between offices and field. 

One step further, Virtual Reality (VR) and Augmented Reality 

(AR) technologies can simulate key processes and performing 

virtual tests of production lines and equipment and helps pinpoint 
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mistakes which could lead to potential disruptions and eliminate 

them before they stall operations. 

4 Case Study  

We now demonstrate how to leverage recent advances in machine 

learning discussed in section 3.1 and increasing levels of sensor 

data from IIoT networks discussed in section 3.2 to help advance 

from predictive maintenance to intelligent maintenance and tackle 

several aspects of the previously mentioned challenges. 

4.1 Approach 

In the following, we use the recently proposed Bayesian recurrent 

neural network (BRNN) framework with variational dropout [15-

17]. BRNNs model the joint distribution and nonlinear complex 

dynamics between all variables (i.e., machine settings and sensor 

measurements). Through variational dropout, BRNNs yield 

estimates of the prediction uncertainty, which capture both model 

uncertainty and the inherent noise in the data. These mean that 

BRNN modeling tackles four of the aforementioned challenges: 

(1) nonlinear spatio-temporal correlations (i.e., correlations 

between variables and time lags), (2) non-Gaussianity in system 

variables, (3) characterization of uncertainty in the predictions, and 

(4) data-driven modeling, without the need for explicit models of 

the system. Furthermore, the dropout technique used in the training 

of these models inherently regularizes and improves the robustness 

of the predictions. 

BRNNs were implemented using the dropout technique at both 

training and testing. The goal is use dropout as a variational 

approximation for efficient inference. For predictions, this involves 

drawing samples of the model and evaluating each model sample. 

The model samples are obtained by applying dropout which drops 

randomly selected inputs, outputs, and hidden states. This results in 

multiple random realizations of the RNN model, each obtained by 

implicitly removing a portion of the inputs, outputs, or hidden states. 

One can then collect statistics over the predictive distribution, 

which characterize uncertainty in the model predictions. This 

approach can be implemented in Keras with TensorFlow rather 

easily. 

Specifically, the BRNN models used comprised 2 layers of LSTM 

nodes, each with 100 and 50 nodes respectively, and followed by a 

single-output dense layer as illustrated in Figure 2. Dropout was 

applied in 3 places: (1) in the input of second LSTM layer with a 

drop rate of 10%, (2) in the states between time lags of both LSTM 

layers with a drop rate of 10%, and (3) in the inputs of the final 

dense layer with a drop rate of 20%. The network training used 

time-sequences of 50 samples and the Adam optimizer. Stopping 

was determined by early-stopping on a 10% validation set. 

 

Figure 2. BRNN model neural net architecture schematics. 

4.2 Turbofan Engine Degradation Dataset [19]  

This methodology is demonstrated using a turbofan engine 

degradation dataset. Since the Turbofan Engine is highly expensive 

to fix, predicting its time to failure (TTF) can help prevent turbofan 

failures, and minimize downtime. Failure probabilities will inform 

technicians to monitor turbofan engines that are likely to fail soon, 

and schedule maintenance regimes. 

IIoT sensors monitor the status of critical operating components by 

recording vibration, temperature and pressure. Data can be gathered 

from multiple turbofan engines in various regions and transmitted 

to cloud for batch processing and further predictive analytics. 

The dataset used here was obtained by simulation using C-MAPSS 

and was used as benchmark in the challenge competition held at the 

1st international conference on Prognostics and Health 

Management (PHM08). Four different datasets were simulated 

under a number of combinations of operating conditions and failure 

modes. The recordings include a total of 24 variables recordings: 3 

settings variables (i.e., system inputs) and 21 sensor variables to 
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characterize the “system health”. All test sequences were stopped 

before the actual failure event, but the time-to-failure was recorded. 

The problem was formulated as a binary classification task 

corresponding to whether a failure is likely to occur within the next 

30 days, as discussed in section 3.1.1. 

4.3 Results 

The performance of this method is demonstrated and contrasted to 

a standard RNN, which are widely applied to process time series 

predictions in the industry. Figure  presents a test prediction 

example an engine that was going to fail. Although the simulation 

was halted before failure, the yellow shaded area indicates the 

warning time window that a failure would occur in 30 or less days. 

Note that the BRNN yield a predictive distribution, shown in the 

figure using shaded bands corresponding to the 10 to 90 percentile 

range and 25 to 75 percentile range. The center curve is the median 

predicted probability of failure. 

By aligning with respect to the warning window, we similarly show 

the test predictive distribution results for engines known to be 

approaching failure in Figure . The results show that BRNN 

robustly indicates with high probability when the engines are 

approaching the failure. 

 

Figure 3: BRNN distribution of probability of failure for an 

engine that would fail. The shaded region denotes the 30 day 

to failure time window. 

 

 

Figure 4: BRNN distribution of probability of failure for all 

test engines known to be approaching failure. 

For comparison, the results using a standard RNN model and with 

similar architecture are shown in Figure . There is increased spread 

between the curves and the probability of failure increases before 

the 30 day time window for a number of engines. Thus, 

maintenance decisions based on these predictions would likely lead 

to a larger number/more frequent maintenance events, thereby 

reducing slightly the uplift of the predictive maintenance system. 

 

Figure 5: Probability of failure for an engine predicted by 

standard RNN. 

4.4 Discussion 

The case study shows how advances in BRNNs can help advance 

current predictive maintenance practices. There are still a number 

of open challenges however. The example relied on labels of when 

the failure occurred. How to learn and infer the need for 

maintenance with perhaps only a few examples or without even 

letting reach that point remains a research topic. One approach 

could involve an increased role of survival analysis models ([20] 

but they still need enough examples to learn the underlying model 

feature representation. Another recent development that may help 

alleviate this issue are self-supervised learning techniques [21] for 

learning the model feature representation without labels. 

Yet another consideration toward Intelligent Maintenance is that 

prediction of the need for maintenance is only the beginning. As 
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previously mentioned, in practice many other considerations need 

to be taken into account when managing an inventory of machines, 

such as logistic considerations and parts availability. Thus, the 

result of the predictive maintenance model should be input for 

schedule management optimization such as to minimize overall risk 

of failure. It is in that respect that uncertainty in the predictions of 

the model play a major role because they provide an optimizer with 

the ability to estimate how eminent is the failure. 

Finally, the goal of these systems is to inform operators, which 

often have many years of experience and engineering judgement. 

Hence, the ability to understand the why for the guidance from such 

systems is crucial. In that respect, neural network-based methods 

are notoriously opaque, but this is a very active area of research 

[22]. 

5 Conclusions 

In this paper, we reviewed past maintenance strategy and discussed 

the evolution of reliability technology. Benefiting from the 

development of Artificial Intelligent and Industrial IoT technology, 

we introduced the next generation maintenance framework, 

Intelligent Maintenance, and discussed its key components. It’s a 

AI and IIoT based maintenance framework that combines the real-

time data collection, transfer, and storage through wireless sensors 

and Big Data technologies, continuously train and deploy the 

machine learning models, and implementation at mobile device, as 

well as AR/VR, for fast and better decision making in the field. 

Finally, a case study was presented as example of methods that will 

enable the above framework. With 72% of organizations 

considering zero unplanned downtime as the No. 1 priority or a 

high priority[6], advancing from Predictive Maintenance to 

Intelligent Maintenance with AI and IIoT is a solid step for the 

ultimate goal of autonomous running manufacturing lines 24/7 with 

zero downtime in future enterprise. 
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