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Abstract

We introduce AutoBench, an open-source driving simulator
for reinforcement learning research on navigation tasks. The
goal of AutoBench is to create a virtual configurable environ-
ment with different difficulty levels and environmental con-
ditions, e.g., road width, the friction coefficient of ground,
weather condition, day/dusk/night, for training and testing
the learning models. As a demo case, we propose Friction-
adaptive Autonomous Driving via Reinforcement Learning
(FAD-RL) that learns to navigate from synthetic data for
friction-adaptive autonomous driving. Based on AutoBench,
the proposed FAD-RL is trained and evaluated on the stan-
dard driving task, i.e., driving forward and backward on a
curving road (S-bend) of grounds with different friction co-
efficients. Experimental results show that the proposed FAD-
RL significantly increases the success rate of arriving at the
finishing point.

Introduction

With the development of sensing technology and artificial
intelligence, Artificial Intelligence of Things (AloTs) be-
comes popular solutions for many applications, while au-
tonomous navigation is an essential ability shared among
different AIoT applications, e.g., object tracking (Fu et al.
2014), disaster rescue (Birk et al. 2011), wildlife protec-
tion (Olivares-Mendez et al. 2015), parcel delivery (Wang
et al. 2019). Conventionally, navigation has been tackled
by simultaneous localization and mapping (SLAM) in two
stages: (1) mapping the environment with a 3D point cloud
derived from LiDAR, and (2) planning a path through the
map. However, it is time-consuming to build and update the
map. Moreover, without the map, the conventional methods
are not able to perform an accurate navigation.

Recently, the deep reinforcement learning (DRL) ap-
proaches have achieved great success in different tasks (Lil-
licrap et al. 2016; Mnih et al. 2016; 2015; Schulman et al.
2015; 2017; Chiang et al. 2019) due to its flexibility and ro-
bustness to different situations. Specifically, DRL provides
an end-to-end learning procedure, in which agents jointly
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learn the representation and action policy to improve the lim-
itation of hand-crafted features and predefined rules. More-
over, DRL can learn difficult tasks through trial-and-error
experiences with environments while conventional criterion
(e.g., shortest path or minimum energy path of path plan-
ning) may be too hard to be satisfied. For example, (Tai,
Paolo, and Liu 2017) applies a 10-dimensional range sensor
as input and employed Deep Deterministic Policy Gradient
(DDPG) to train the agent for autonomous navigation.

Learning and evaluating reinforcement learning for dif-
ferent tasks on simulators have become popular nowadays
since 1) reinforcement learning requires simulating differ-
ent situations for deriving a robust model, and 2) the cost of
failure is too expensive, e.g., traffic collision of autonomous
driving. For example, OpenAl Gym provides both 2D en-
vironment such as Atari, Box2D and 3D MuJoCo environ-
ments for continuous control tasks (Brockman et al. 2016).
DeepMind Lab provides a 3D navigation task based on
Quake III Arena engine (Beattie et al. 2016). Moreover, Viz-
Doom utilizes Doom to built a First-Person Shooter envi-
ronment for visual reinforcement learning (Kempka et al.
2016). A variety of state-of-the-art algorithms have been
proposed to solve these tasks, and even outperform hu-
man capability in some cases, e.g., (Mnih et al. 2015;
Lample and Chaplot 2017).

On the other hand, for autonomous driving, Gazebo cre-
ates a 3D dynamic multi-robot environment with physics
engine and rendering capabilities, and is highly-compatible
with Robot Operating System (ROS) (Koenig and Howard
2004). Furthermore, AirSim provides 3D environment with
highly-detailed visualization and physical models for UAVs
(Shah et al. 2018). Recently, CARLA focuses on creating a
simulator for urban area driving and weather control (Doso-
vitskiy et al. 2017). Despite providing the sophisticated en-
vironments, these projects are still lack of user-friendly dif-
ficulty controls, e.g., inputting from 1 to 4 as the difficulty
levels.

Therefore, in this paper, we introduce AutoBench, aiming
to provide a difficulty and reward configurable testbed with
different environment conditions for building autonomous
driving benchmark. With the plug-and-play interface, var-
ious time/weather selections and visual observation types,
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Figure 1: System Architecture of AutoBench

users can train and validate their algorithms without build-
ing the environments, which breaks the barriers to entry
into reinforcement learning. Moreover, since the curriculum
learning (Bengio et al. 2009), which incrementally increases
the difficulty to train the learning model, has been widely
adopted and proved to be effective on many tasks, the pro-
posed difficulty-configurable environment can also serve as
the environment to test different curriculum learning algo-
rithms.

To demonstrate the ability of AutoBench, we formulate
a new research problem of autonomous driving on different
friction grounds and propose Friction-adaptive Autonomous
Driving via Reinforcement Learning (FAD-RL). Specifi-
cally, we propose a new RL method by theoretically ana-
lyzing the relation between control actions and friction co-
efficients to automatically adjust the control actions without
re-training. The results not only manifest the effectiveness of
the proposed FAD-RL but also the usefulness of AutoBench.

AutoBench

To provide a difficulty and reward configurable training en-
vironment for autonomous driving, we propose AutoBench'
based on Unity Engine and Unity ML-Agents (Juliani et al.
2018). Unity ML-Agents is an open source framework for
training Al agents and provides a plug-and-play framework
for both Python and Unity. It is worth noting that ML-Agents
also provides a wrapper class that supports the OpenAl Gym
interface for further integration, i.e., users are able to test any
OpenAl-Gym-compatible algorithms on AutoBench.

The system architecture of AutoBench is shown in Fig-
ure 1, where ML-Agents forms the bottom layer of Auto-
Bench including packages for both Unity and Python envi-
ronments and a communicator for exchanging data between
Python and Unity. On top of that, AutoBench on the Python
side provides a training loop for learning, which offers the
flexibility of adopting different ML approaches to solve the
task. Moreover, BenchmarkManager is constructed to keep
track of the benchmark progress and analyze the results.
On the other hand, AutoBench on the Unity side constructs
a compiled instance of the environment and automatically
launches when the training starts.

In addition to building the environment, we provide a pre-
trained model as shown in Figure 2, where vector inputs are
the coordinates of the vehicle. The architecture follows the

Uhttps://github.com/kartal 297963/AutoBench

x2 x2
Vector inputs Normalize m—

Figure 2: Pre-trained Model Architecture

(b) Road Width = 15m

Figure 3: Configurable Difficulty w.r.t. Road Width

standard PPO (Schulman et al. 2017) implementation with
the following modification: 1) adding Convolutional Neu-
ral Networks (CNN) as the visual encoder, 2) adding Long
Short Term Memory (LSTM) (Hochreiter and Schmidhuber
1997) layer after the concatenation of visual and vector la-
tent features to implement recurrent function in Deep Recur-
rent Q-Network (Hausknecht and Stone 2015). The results
can be found in https://youtu.be/Ptg1hnLxy9U.

Configurable Difficulty

With the configurable difficulty levels, different algorithms
can be benchmarked through the success rates of different-
level tasks. Here, three parameters are adjustable for the dif-
ficulty control of the environment: 1) road width, 2) visual
details, and 3) visual observation types, which can be eas-
ily specified through the JSON file in the python project.
Specifically, variants of the road width are shown in Fig-
ure 3. For the visual observation types, we integrate ML-
ImageSynthesis (ML-ImageSynthesis 2017) plugin to pro-
vide image types for raw, segmentation, depth, optical flow,
and normal ones. AutoBench also provides weather and time
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Figure 4: Configurable Difficulty w.r.t. Weather and Time

controls to add more diversity to the environment. Take Fig-
ure 4 as an example. The weather condition includes clear
sky, cloudy, foggy, rainy, storm and snowy of different lev-
els. Moreover, the time of the day is a continuous option
with corresponding sun angle and lighting color change.

Environmental Details

The environment consists a 50x50m ground surrounding by
3m walls, and a car model approximately 4.3x1.8x1.4m (re-
ferred to Figure 3). The goal is to navigate to the finishing
area’ through the S curve path without colliding with the
barriers. To improve training efficiency, AutoBench trains
10 agents simultaneously and independently. Moreover, Au-
toBench provides 3 cameras setups for each agent’s visual
observations: one front-facing camera mounted on the top
center of the vehicle, and two rear-facing cameras simulat-
ing two side mirrors of the vehicle. Users can specify each
camera with any type of visual observations or simply dis-
able the camera visual output. The training information of
agents is listed below.

e Observations: Vector observations with 7 variables corre-
sponding to the velocity of the agent, relative position of
the target and Y-axis (yaw) rotational angle; Visual obser-
vations corresponding to the 3 camera outputs.

e Actions: 9 discrete actions corresponding to 3 options of
throttle levels (+1, 0, -0.3) magnitude of throttle and 3
options of steering angles (+30,0,-30) degree.

e Rewards: 5 parts including the position reward, veloc-
ity reward, success reward, time penalty and collision
penalty. To utilize the reward shaping, the reward coef-
ficient can be specified in the configuration file.

The blue box is only for visualizing finishing area, and agents
cannot see it.

Figure 5: physical diagram of the vehicle

Demo Case: Friction-adaptive Autonomous
Driving

In this section, we study the problem of autonomous driving
on grounds with different friction coefficients. One of the
possible solutions is to train an RL model by adjusting the
environment parameters so that the agent can learn from dif-
ferent situations. However, it is infeasible to specify all the
friction coefficients. Moreover, the training time of this ba-
sic approach significantly increases, which is severe for RL
training. Therefore, we propose a method to train the RL in
one environment and theoretically analyze the relation be-
tween control actions and friction coefficients for automati-
cally adjusting the actions.

Lateral control

The effect of skid on the turn is greater than the effect on
driving forward and backward when the friction force is re-
duced since the changing direction is at an angle with the
direction of motion, i.e., the force the tires are exerting is
also at an angle with the momentum vector. Therefore, to
safely make a turn, the velocity of vehicle requires being
limited on the aspect of turn at first. It is known that the ve-
hicle is in a circular motion when conducting a turn. In the
condition that the road surface is horizontal, the centripetal
force of the circular motion, denoted as f., is all provided
by the road friction. Let fyy,q, and ;o denote the maximum
road friction and the friction coefficient, respectively. The
maximum speed limit, V.2¢__is obtained when cornering.

max?

m X Vmaf

fc = T = ffmaw
ffma:r = p xXmg 0

= Vi —\/gxuxR

where R denotes the radius of gyration. In other words,
when raining, the friction coefficient y is smaller, which re-
sults in 1) a smaller maximum speed V,2¢ or 2) increasing
the radius of gyration to maintain the speed. Next, we aim to
find the radius of gyration R of the vehicle. Figure 5 shows
a physical diagram of the vehicle, where a stands for the
front suspension of the vehicle, b is the wheelbase, and c is
the rear suspension of the vehicle. Since a, b, ¢ and 6 can
be found from the environment, R can be derived from the
figure as follows.

R = \/(a +b)2 + b2 cot? 6. )
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Figure 6: (a) The curve of the turning process (observed from the
front of the vehicle) and (b) Velocity-time diagram of the turning
process

By Equation 1, we can get V.22 by setting the friction coef-
ficient 1 as

Ve, = \/gxux \/(a+b)2+b2cot2e. 3)

Longitudinal control

After deriving the maximum speed limit of the turn into op-
eration, the newly converted model is still insufficient since
the speed may be too fast before entering the turn. In this
case, the vehicle will be too fast and cannot intermediately
reduce to V2@ and thus may hit the edge of the road. In
other words, since the proposed method judges whether the
speed of the car is greater than the maximum speed limit and
then decelerates in the moment when the car makes a turn,
the velocity of the car is likely too high before entering the
action of turning action. On the other hand, if we apply the
maximum speed limit to the entire route during the turning
period, it will spend more time to reach the end, and even
exceed the timeout set in the environment, which is judged
as a failure.

To solve this problem, another limitation on velocity
is proposed, i.e., restricting the velocity when the vehicle
moves forward. If the vehicle starts to turn under this ve-
locity, it can decelerate to the limit velocity in time without
hitting the edge of the road. Suppose that the vehicle should
drive in the middle of the road. Whenever it starts to turn, the
minimum distance between the front of the vehicle and road
side should be larger than half of the width of road: w me-
ters. Then, we take the worst case as an example. The vehicle
is driving toward the road side, and starts to turn at the time
the distance between vehicle and road side is w meters left
as Figure 6(a) shown. When the vehicle is completely paral-
lel to the road, it will be the time that it is the closest distance
to the edge of the road. Before that condition happened, the
speed of the vehicle must be reduced to the maximum speed
of the turn, so that the car no longer continues slipping to hit
the roadside.

Because the whole process time of turning process is ex-
tremely short and the velocity with limitation is not fast, we
ignore the distance of lateral skid during the period of turn-
ing. Knowing that the distance between the radius of gyra-
tion R and the edge of the road at the start of the car is w
meters, we first calculate the angle of 6 in the figure with in-
verse trigonometric function as the formula 4 below. Then,
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Figure 7: action flow chart

we get the driving distance s of the whole process with 6.

R—w

6 = arccos
g )
s=2Rm x — = R#
2m

During the turning process, the vehicle performs an uni-
form deceleration motion. It can easily found the maximum
linear velocity by v-t graph as Figure 6(b). The v-t graph
of uniform deceleration motion is a shape of trapezoid. The
area of this trapezoid is the distance vehicle traveling. The
slope of this trapezoid is the acceleration value of the vehicle
during braking. Also, the maximum velocity of the vehicle
turning V%2 is known in the previous part. Accordingly, we

mazx

can deduct the maximum linear velocity V2 .
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System flow

The idea is to adaptively restrict the speed limit on output
for driving on the ground with different friction coefficients.
In other words, the process before inputting the observation
to the AutoBench model is same as the original. After Auto-
Bench model decides the output action, the proposed FAD-
RL first determines whether the action is turning. Afterward,
it compares the present velocity to the lateral or longitudinal
speed limit according to the action. If it is larger than the
maximum velocity, change the item of speed control in the
action to deceleration. If it is not speeding, then do not do
any action. After this, return the action back to the vehicle
and execute it. System flow chart is illustrated in Figure 7.
To construct an environment with different friction coeffi-
cient for a model by converting the former environment, we
use the Wheel Collider function in the Unity environment to
set up a less frictional environment. Therefore, the vehicle
in the environment would easily slip, it can mimic a road
surface with a small friction coefficient. We modify sev-
eral parameters in Wheel Collider: (1) Extremum Slip, Ex-
tremum Value, Asymptote Slip and Asymptote Value of for-
ward friction, (2) Extremum Slip, Extremum Value, Asymp-
tote Slip and Asymptote Value of sideways friction. Forward
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and sideway frictions represent the properties of tire friction
when the wheel is rolling forward/sideways respectively.

On the basis of Forward Friction and Sideways Friction,
we can make line graphs respectively as below. The hori-
zontal axis represents slip, which refers to how much the
tire is slipping, that is, the difference between the surface
velocity of tire and the moving velocity of vehicle. Due to
the value of slip, when the vehicle is moving, it corresponds
to different tire force unleashed on the connecting dot. The
vertical axis of the graph shows the size of the tire force.
According to the properties of tires, we can draw a curve
which approximately to a two-piece spline as Figure 8. This
curve can be separated into two main parts. In the first sec-
tion, the curve would climb steadily to the point (Extremum
Slip , Extremum Value). Besides, the curve’s tangent at the
point (Extremum Slip , Extremum Value) is zero. In the sec-
ond part, curve would begin to go down from the point (Ex-
tremum Slip , Extremum Value) to the point (Asymptote
Slip , Asymptote Value). Similarly, the curve’s tangent at
the point (Asymptote Slip , Asymptote Value) is zero. When
we lower down Extremum Slip, Extremum Value, Asymp-
tote Slip and Asymptote Value, tire force exerted on the
contact point would decrease, implying the smaller tire fric-
tion. Therefore, the design reaches our expectation of skiddy
road.

Experimental results

First of all, we re-train a new model in the default environ-
ment with AutoBench as a converted model. Next, we con-
vert the model by our method according to the friction co-
efficient (0.375). For the baseline, we train a new model on
AutoBench again based on new environment (friction co-
efficient=0.375) and compare new model to the proposed
FAD-RL, which applies speed limit, to see if our method
can achieve the same effect.

From Table 1, the original model in new environment fails
to arrive the destination; thus, it is necessary to retrain a
new one.If we retrain the new model with our method, it
can reach 70% success rate and save lots of training time.
Although the time step is increased by a factor of 0.5, the
speed reduction in a slippery environment is required for
safe driving, so the increase of time is acceptable. We re-
train a model that can adapt to the friction coefficient in the
new environment, and we found that the time step has in-
deed increased. Otherwise, we found that the average time

.. . In drift
Round In ong inal I.n drift environment
environment | environment . ..
with speed limit
1 143 F F
2 133 F 223
3 139 F 208
4 133 F 193
5 128 F F
6 138 F F
7 134 F 210
8 F F 199
9 135 F 214
10 130 F 210
avg
time step 134.8 0 208.1
success rate 90% 0% 70%

Table 1: Model trained with 30M steps in different environments.
(F: fail) (Unit: time step)

New trained Model | Original model

Round with 10M steps with speed limit

1 241 F
2 241 223
3 234 208
4 238 193
5 243 F
6 239 F
7 244 210
8 244 199
9 237 214
10 235 210

avg time step 239.6 208.1

success rate 100% 70%

Table 2: Model transformed (with speed limit) compared to model
trained with 10M steps in drift environment. (F: fail) (Unit: time
step)

step has little difference between models above. Thus, we
successfully save training time by transforming the model.

Conclusion and Future Work

In this paper, we introduce AutoBench, an open-source driv-
ing simulator for reinforcement learning research on navi-
gation tasks. To demonstrate the usefulness, we formulate
a new problem of navigation on the ground with different
friction coefficients. Experimental results manifest that 1)
the proposed FAD-RL is effective and 2) AutoBench pro-
vides an useful environment for RL training, which facili-
tates many applications. We plan to extend AutoBench by
adding curvature as the configurable options since the cur-
vature of the road is intuitively related to difficulty of the
task. Moreover, we plan to design an algorithm that is able to
adjust the difficulty dynamically based on the performance
while eliminating the operational cost of human for adjust-
ing the difficulty manually.
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