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Abstract

Neural network (NN)-based anomaly-detection model has
achieved unprecedented performance in internet of things
such as fault diagnosis for machine tools. To train a promising
neural network-based fault diagnosis model, sufficient fault
data is necessary. In reality, machines are rarely operating in
fault and cause an unbalance between health data and fault
data. Various Generative adversarial networks (GANs) such
as auxiliary classifier GAN (ACGAN) were proposed to gen-
erate artificial data that are similar to real data for data aug-
mentation. However, applying the current GAN in fault di-
agnosis model, the fake data makes decision boundary un-
stable and results in low classification accuracy. Besides, a
certain amount of fault data is required and only one-to-one
domain generation can be achieved, rather than one-to-many.
In this paper, we propose an end-to-end fault diagnosis frame-
work with health-based fault generative adversarial network
(HFGAN) to solve data imbalance issue, augmentation un-
certainty issue and improve fault diagnosis for machine tools.
Based on the proposed HFGAN, various high quality target
domain fault data is generated based on health data and one-
to-many data generation is achieved. From the experiments,
mixing the generated fake data with 7.5% real data as the in-
put of the fault diagnosis model, the classification accuracy
achieves 99.8%. Moreover, the cost of data collection in fac-
tories can be reduced since only 7.5% of real machine data is
required for fault diagnosis.

Introduction
With the advance of deep learning and internet of things
technologies, data-driven prognostics and health manage-
ment (PHM) for machine tools have become promising,
which not only reduces the maintenance cost but also en-
hances the yield rates (Lin et al. 2019). Take high-speed
rolling components as an example. High-speed rolling com-
ponents play an important role in many fields of machine
tool industries, such as bearings in a drilling machine,
turbines of a power generator, or gears inside an engine
(Hasani, Wang, and Grosu 2019). When some rolling com-
ponents are broken, an ill-functioned machine will be shut
down. The repairing cost and the downtime results in lower
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productivity and increasing productivity cost. Furthermore,
the deficient products will be dumped. A fault diagnosis
(FD) model to notify fault in advance is necessary.

Building a reliable FD model requires a large amount of
fault data for training. However, training data among dif-
ferent machine states is usually unbalanced. For example, a
mechanical machine works under health condition most of
the time and generates a large amount of health data, and
fault data is generated until it crashes. Compared to health
data, fault data in training dataset is relatively rare, which is a
“data imbalance” problem. Suffered from unbalanced train-
ing data, it is relatively difficult to train a deep FD model to
achieve accurate prediction of machine conditions.

Generative adversarial network (GAN) was proposed to
generate realistic looking image data to solve data insuffi-
cient issue (Goodfellow et al. 2014). Since the original GAN
had problems with unstable training, variant GAN such as
deep convolutional generative adversarial networks (DC-
GANs), Wasserstein GAN (WGAN) (Arjovsky, Chintala,
and Bottou 2017) (Radford, Metz, and Chintala 2015) and
semi-supervised learning using GAN (Odena 2016) were
developed to improve the quality of generated images. Af-
terwards, auxiliary classifier GAN (ACGAN) (Odena, Olah,
and Shlens 2017) were designed to generate high resolution
images and improve the performance in classification tasks.
Since limited GAN has been utilized in generating raw sen-
sor data, (Shao and Yan 2019) was the first attempt to gener-
ate mechanical sensor signals with subsequent fault classifi-
cation based on ACGAN architecture.

However, ACGAN has augmentation uncertainty prob-
lem, i.e., the augmented data may change the classifica-
tion decision boundary and result in low accuracy. Besides,
(Shao and Yan 2019) requires about 0.8 million data for
training data generation model. The insufficient fault data
problem is not really solved since certain amount of fault
data is necessary before generating data. In addition, current
GAN and their variants for smart manufacturing only apply
one-to-one domain data generation instead of one-to-many.
One type of fault data can not generate more than two other
types of fault data at the same time.

In this paper, we propose an end-to-end fault diagnosis
framework with data preprocessing module, health-based



data generation module and convolutaional neural network
(CNN)-based fault diagnosis module to solve data imbal-
ance issue and diagnose faults for machine tools. In the data
generation module, we modify ACGAN to design a health-
based fault generative adversarial network (HFGAN) by uti-
lizing abundant amount of health data as input instead of
random noise. We also modify the loss functions of discrim-
inator and generator to solve augmentation uncertainty is-
sue. The loss function of discriminator in ACGAN consid-
ers the classification performance of real data and fake data.
Before the generator is well-trained, the fake data is not sim-
ilar to real data and may change the classification boundary,
which results in low accuracy. Therefore, we modify loss
functions to make discriminator focus on learning classifica-
tion boundary based on real data and generator pay attention
to generate fake data. We also add the content loss to keep
more content of real data. As a result, HFGAN can generate
two types of fault data that similar real data based on health
data and achieve one-to-many domain generation.

The main contributions of this paper are summarized as
follows:

• An end-to-end fault diagnosis framework with data pre-
processing module, health-based data generation module
and CNN-based fault diagnosis module was proposed to
solve data imbalance issue and intensively increase the
accuracy of fault diagnosis.

• The proposed HFGAN solves the augmentation uncer-
tainty problem in ACGAN and generates high quality fake
data by modifying the loss functions of generator and dis-
criminator and adding content loss.

• Experiments show that mixing the generated fake data
with 7.5% real data as the input of the fault diagnosis
model, the classification accuracy achieves about 99.8%.

• The proposed HFGAN reduces the cost of data collection
in factories since HFGAN only needs 7.5% of real ma-
chine data to generate data.

Related Work
Generative adversarial network (GAN) was proposed in
(Goodfellow et al. 2014) to solve data insufficient issue by
generating artificial images, but the primitive GAN was ex-
tremely difficult to train and was unstable. (Radford, Metz,
and Chintala 2015) developed deep convolutional generative
adversarial networks (DCGANs) to provide a more stable
set of architectures for training GAN and learn good rep-
resentations of images for unsupervised learning and gen-
erative modeling. (Arjovsky, Chintala, and Bottou 2017;
Gulrajani et al. 2017) designed a new loss function based
on Wasserstein distance to solve the collapse mode prob-
lem and increase the model stability. To improve the quality
of generated images, (Odena 2016) demonstrated the semi-
supervised learning using GAN by producing class labels in
discriminator network. (Odena, Olah, and Shlens 2017) pro-
posed auxiliary classifier GAN (ACGAN) to generate high
resolution images and achieve accurate classification tasks
by adding labeling information.
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Figure 1: End-to-end data generation and fault diagnosis
framework.

Comparing to conventional GANs, ACGAN can gener-
ate more discriminant samples by providing label informa-
tion. The objective function of ACGAN is to maximize log-
likelihood of correctly assigning to the source and class they
belong to, which can be represented by generator loss LG
and discriminator loss LD:

LD =Ey∼pydata,c∼pc [logP (C = c|y)]+
Ez∼pz,c∼pc [logP (C = c|G(z, c))]+
Ey∼pydata

[logP (S = real|y)]+
Ez∼pz,c∼pc [logP (S = fake|G(z, c)].

(1)

LG =Ey∼pydata,c∼pc [logP (C = c|y)]+
Ez∼pz,c∼pc [logP (C = c|G(z, c))]−
Ey∼pydata

[logP (S = real|y)]−
Ez∼pz,c∼pc [logP (S = fake|G(z, c)].

(2)

In LG and LD, the random noise z ∼ pz and class c ∼ pc
is the input of generator G. The output of G is generated
samples G(z, c). S denotes the source of input data and y
denotes the real fault data from dataset pydata.

GAN and its variant have been proved be a useful tool
for data augmentation in various image generation tasks but
limited GAN has been adopted in raw sensor data gener-
ation. (Shao and Yan 2019) utilized ACGAN to generate
mechanical sensor signals with subsequent fault classifica-
tion. Authors built the block of generator and discrimina-
tor based on one-dimensional CNN to enhance the ability
of capturing representations from raw data. Besides, class
labels are added in both generator and discriminator to ac-
celerate model training. However, the augmentation uncer-
tainty problem still existed in ACGAN and cannot achieve
one-to-many domain generation. Besides, the model train-
ing in (Shao and Yan 2019) still required a certain amount
of fault data. Data imbalanced problem in machine tools has
not completely solved. Therefore, we propose a health-based
fault generative adversarial network based on ACGAN to
utilize the abundant health data and generate various types
of fault data at the same time.



Figure 2: Data preprocessing flow.
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Figure 3: HFGAN.

End-to-end Fault Diagnosis framework

Figure 1 is the proposed end-to-end fault diagnosis frame-
work with health-based fault generative adversarial network
(HFGAN). There are three modules: data preprocessing
module, health-based data generation module, and CNN-
based fault diagnosis model.

Data Preprocessing Module

The input of the proposed framework is vibration data. The
data preprocessing for input data is shown in Figure 2. First,
we divide vibration data into consecutive non-overlapping
windows. Since vibration data in frequency domain are more
distinct than in time domain, we execute Fast Fourier Trans-
form (FFT) in every window. To filter the noise and increase
the differentiation of peak value, the moving average filter is
adopted. After the transformation, we concatenate the win-
dow data to time-frequency image to retain both spectrum
and time-series information. Therefore, we can utilize CNN
to increase the performance of classification.

Health-based Data Generation Module
Taking advantage of plenty of health data in factories, we
modify the input and the loss functions of ACGAN (Odena,
Olah, and Shlens 2017) to propose a health-based fault GAN
(HFGAN), as shown in Figure 3. The input of HFGAN is
changed from random noise z in ACGAN to health data x
since health data and fault data are all vibration data. Be-
sides, the loss of generator (LG) and the loss of discrimi-
nator (LD) of ACGAN are modified in HFGAN. The dis-
criminator in ACGAN considers the performance of clas-
sifying real data and fake data into different fault condi-
tions. The fake data generated by the model, which is not
well-trained, becomes noise and makes classification bound-
ary as well as discriminator unstable. Thus, we remove
Ex∼pxdata,c∼pc [logP (C = c|G(x, c))] in discriminator to
focus on the classification boundary based on real data, as
shown in Eq. (3). Since the discriminator has concentrated
on the classification loss of real data, the generator only
needs to care the performance of fake data. We remove
Ey∼pydata,c∼pc [logP (C = c|y)] and Ey∼pydata

[logP (S =

real|y)] in generator, as shown in Eq. (4).

LD =Ey∼pydata,c∼pc [logP (C = c|y)]+
Ey∼pydata

[logP (S = real|y)]+
Ex∼pxdata,c∼pc [logP (S = fake|G(x, c)].

(3)

LG =Ex∼pxdata,c∼pc [logP (C = c|G(x, c))]−
Ex∼pxdata,c∼pc [logP (S = fake|G(x, c)].

(4)

Moreover, we add the content lossLC in generator to keep
as more as the content of real data and improve the quality
of generated data. The generator loss LG (4) becomes:

LG =Ex∼pxdata,c∼pc [logP (C = c|G(x, c))]−
Ex∼pxdata,c∼pc [logP (S = fake|G(x, c)] + LC.

(5)

We can choose maximum absolute error, Huber loss and
maximum mean discrepancy as content loss (Gretton et al.
2012).
• Maximum absolute error (MAE)

LC = Ex∼pxdata,y∼p
y
data,c∼pc |G(x, c)− y| . (6)

As shown in the Eq. (6), MAE is the absolute value
between generated samples G(x, c) and real samples y.
While the gradient descent is executed, the large gradient
of MAE increases the training speed.

• Huber loss

Lδ(y,G(x, c)) =

{
1
2 (y −G(x, c))

2, |y −G(x, c)| ≤ δ,
δ |y −G(x, c)| − 1

2δ
2, otherwise.

(7)
Huber loss combines the advantages of MAE and MSE
by the error parameter δ. When the difference between
generated samples G(x, c) and real samples y is less



Table 1: CWRU bearing dataset
Fault width
(inch)

Motor load
(hp)

Shaft speed
(rpm)

Fault
Condition

0.007 0,1,2,3 1797,1772,
1750,1730

Inner race
Ball,
Outer race,
Combo

0.014 0,1,2,3 1797,1772,
1750,1730

Inner race
Ball,
Outer race

0.021 0,1,2,3 1797,1772,
1750,1730

Inner race
Ball,
Outer race,
Combo

0.028 0,1,2,3 1797,1772,
1750,1730

Inner race
Ball

than δ, the loss becomes MSE. Otherwise, it is MAE.
The large gradient of MAE increases the speed of
training model. MSE makes optimization achieve near
the minimum point as the gradient decreases.

• Maximum mean discrepancy (MMD)

MMD[F, pxdata, p
y
data] = sup

f∈F
(Ex∼pxdata

[f(G(x, c))]

− Ey∼pydata
[f(y)])

(8)

Let F be a class of function f , the main idea of MMD is to
calculate the discrepancy of two samples from two differ-
ent probability distributions pxdata and pydata over function
f .
Assuming that [x, y] are obtained from two datasets
[pxdata, p

y
data] and their sizes are [m,n]. MMD is the mean

of difference between all points in the two samples:

MMD[F, x, y] = sup
f∈F

(
1

m

m∑
i=1

f(G(xi, c))−
1

n

n∑
i=1

f(yi))

(9)

CNN-based Fault Diagnosis Model
We adopt VGGNet (Simonyan and Zisserman 2014) as
CNN-based FD model, since the convolution/pooling layer
of CNN can automatically learn important features (Gao et
al. 2018; Ding and He 2017). We modify the architecture of
VGGNet according to the characteristics of spectrum data
and decrease the number of layers. Since the characteristic
frequency appears in every length of the spectrum, the ker-
nel size of the first layer is modified to [8 ∗ 8]. Besides, the
time-frequency diagram is not as complicated as the general
graph. We can achieve accurate classification performance
with only three convolution and pooling layer. According
to the evaluation, the accuracy of the modified VGGNet is
98.8%, which is twice higher than the original VGG-16.

Figure 4: Comparison of classification accuracy.

Experiments
In this section, we give numerical results to do the ablation
study for the proposed framework and discuss the data gen-
eration performance of HFGAN.

Data Preparation
The dataset is provided by the Case Western Reserve Univer-
sity (CWRU) Bearing Data Center (CWR ; Smith and Ran-
dall 2015). CWRU data contains several working setting, as
shown in Table 1. The different working setting results in
five conditions: 1)health 2)inner ring fault 3)outer ring fault
4)ball fault 5)combination fault on both inner ring and outer
ring, which will be called “combo fault.” In the following
experiments, the 50% health data will be the input of HF-
GAN to generate different fault conditions. To simulate in-
sufficient fault data, we only utilize 2.5%, 5% and 7.5% fault
data for training. The rest of 90% data is for testing.

Ablation Study of Fault Diagnosis Model
The ablation study is comparing the effect of ACGAN (Shao
and Yan 2019), HFGAN without content loss and HFGAN
with content loss. The discriminator of HFGAN consists of
four convolution layers and two fully-connected layers with
Leaky ReLU and softmax. The kernel size of convolution
layer is [4 ∗ 4], and there are 64, 128, 256 and 512 kernels
in four covolution layers. The generator of HFGAN consists
of three convolution layers, one resnet block, three deconvo-
lution layer and output with hyperbolic tanget function. AC-
GAN generates ball fault data and outer ring fault separately
based on random noise. Otherwise, HFGAN generates ball
fault data and outer ring fault data based on 50% health data
of CWRU. We randomly select 200 fake ball fault data and
200 fake outer ring flat data to mix with 2.5%, 5% and 7.5%
real data as the training input of the CNN-based FD model.
Eq. 10 is adopted to evaluate the classification accuracy:

Testing Accuracy =
Ncorrect

Ncorrect +Nwrong
, (10)



(a) HFGAN with MAE. (c) HFGAN with MMD.(b) HFGAN with Huber loss.

(a) ACGAN. (b) HFGAN without content loss.

Figure 5: The performance of different loss functions.

Table 2: Classification accuracy under various training set-
ting

Proportion of
Real Data

Additional
Fake Data

Testing
Accuracy

2.5% 0 78.7%

2.5% 200 ball fault+
200 outer ring fault 83.5%

5% 0 79.6%

5% 200 ball fault+
200 outer ring fault 98.8%

7.5% 0 82.3%

7.5% 200 ball fault+
200 outer ring fault 99.8%

whereNcorrect is the number of correct classification results
and Nwrong is the number of wrong classification result.

In Figure 4, we can see that HFGAN achieves higher ac-
curacy than ACGAN by modifying the loss functions of dis-
criminator and generator and adding the content loss makes
the result more accurate.

In addition, we want to discuss whether the generated data
improves the accuracy of CNN-based FD model, Table 2
shows that adding fake data improves model accuracy 4.8%,
19% and 17.5% with 2.5%, 5% and 7.5% of real data, re-
spectively. We can see that mixing fake data with real data
not only solves data imbalance problem, but also intensively
increases the classification accuracy.

Quality of Data Generation
Figure 5 shows the distribution of generated data and real
data in classification latent space of ACGAN, HFGAN with-
out content loss and HFGAN with different content losses.
We pretrain a fault classification model and output the last
full-connected layer with two neurons. The fake data of fault
1 and fault 2 generated by ACGAN are too close to each

other, as shown in Figure 5(a). These data will result in poor
classification results. After modifying the generator loss and
discriminator loss, the fake data of fault 1 and fault 2 is sep-
arated, as shown in Figure 5(b). The classification result is
better. However, the fake data is still far from the real data
in latent space. We add different content loss in generator.
After adding content loss, fake data and real data becomes
closer. Since the invariable large gradient makes MAE un-
able to reach the minimum point and domain shift between
two dataset is not considered in Huber loss, some of the fake
data of fault 1 and fault 2 still overlaps in Figure 5(c) and
Figure 5(d). With MMD as content loss, the distribution of
different fake data and real data becomes perfect. Besides,
the test accuracy of FD model with MAE, Huber loss and
MMD are 68.25%, 86.39% and 99.8%, respectively. There-
fore, according to the distribution of generated data and test
accuracy, MMD outperforms MAE and Huber loss.

By the modification of loss functions and adding content
loss, Figure 6 shows the distribution of different fake fault
data generated by HFGAN based on health data. Regardless
of generating which type of fault data, the distribution of
fake fault data is very similar to real fault data.

Conclusion
In this paper, we proposed an end-to-end fault diagno-
sis framework to generate different fault data and diag-
nose faults for machine tools. In the framework, data pre-
processing module transformed fault diagnosis to pattern
recognition task by converting time-series vibration to time-
frequency image. In data generation module, we replaced
the input noise with health data and proposed a health-based
fault generative adversarial network (HFGAN). In HFGAN,
we modified the loss functions of generator and discrim-
inator and added maximum mean discrepancy (MMD) as
content loss to solve augmentation uncertainty issue in AC-
GAN and improve the quality of data generation. The pro-
posed HFGAN can generate different types of fault data at



(a) Distribution of real and fake ball fault. (b) Distribution of real and fake outer ring fault.

(c) Distribution of real and fake inner ring fault. (d) Distribution of real and fake combo fault.

Figure 6: Distribution of real and fake fault.

the same time based on health data to achieve one-to-many
domain data generation. According to the experiments, fac-
tories can only collect less than 7.5% real machine data and
mix with the generated fake data to achieve 99.8% classifica-
tion accuracy. In conclusion, the proposed end-to-end fault
diagnosis framework with HFGAN not only generated high
quality fault data based on health data to solve data imbal-
ance issue as well as augmentation uncertainty issue but also
can intensively reduce the data collection cost in factories.
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