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Abstract
Previous works have shown several approaches to obtain
compact convolutional neural networks for mobile and em-
bedded applications. However, because of the static nature
of most convolutional neural networks, these approaches re-
quire training an individual model for each different budget
constraints. In this paper, we introduce BudgetNet, a frame-
work that dynamically regulates the computational cost of a
given model during inference. Our framework directly selects
components, blocks or paths, of a pre-trained model to eval-
uate a given image under an assigned budget constraint. We
validate our proposed framework with ResNet and ResNeXt
on CIFAR-10 and CIFAR-100 respectively. The results show
that, with a single model, our method is more efficient when
dealing with trade-offs between the computation cost and ac-
curacy over a wide range of budget constraints. Based on
the ResNeXt-29 (4×16d) model, our method can control the
amount of computation from lowest 25 % towards origi-
nal computation according to user’s request while achieving
82.5% to 93.4% accuracy on CIFAR-10.

Introduction
Performing inference operations in deep convolutional neu-
ral networks (CNNs) on mobile and edge devices have be-
come a primary trend in vision-based applications, such as
face recognition (Hu et al. 2015) and autonomous vehi-
cles (Bojarski et al. 2016).

In many practical applications, computational resources
and latency demands for the same provided services on the
same device could vary across time. A computational of-
floading scheme (Mtibaa et al. 2013) has been proposed to
maximize the lifetime of the ensemble of mobile devices,
and the works of (Gmach et al. 2007) involving workload
trace data of a data center demonstrates time-varying ser-
vice demands of enterprise applications. While compres-
sion techniques provide effective solutions to speed up in-
ference operations, the characteristic of fixed computational
costs during inference phase is unfavorable with dynamic
circumstances. Some existing works propose to dynami-
cally determine which subsets of the neural network archi-
tecture to engage in inference operations (Wu et al. 2018;
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Figure 1: The fundamental concept of BudgetNet. A given
model would use fewer components with lower budget con-
straint while tending to use the entire network with higher
budget constraint during the inference phase.

Liu and Deng 2018; Teja Mullapudi et al. 2018). However,
these works only change the inference path according to the
properties of an input sample.

In this paper, we introduce BudgetNet, a framework that
dynamically regulates the computational cost of a given
model during inference phase. In other words, users can ad-
just the components usage of a given model according to
their demands, such as using 75% or 50% of maximum com-
ponents inside the neural network. Fig. 1 shows the funda-
mental concept of BudgetNet.

Our contributions are listed as follows:

• We propose BudgetNet, a framework with reinforcement
learning approach that can dynamically regulate the com-
putational cost of a given model based on a target budget
constraint during inference phase.

• BudgetNet can speedup inference operations of a given
model in a particular interval of components usage with-
out significant degradation in accuracy.

• We demonstrate the adaptability of BudgetNet by apply-
ing our framework to ResNeXt and ResNet. The extensive
experimental results show that our method can perform
more efficient trade-offs between computational cost and
accuracy over a wide range of budget constraints with the
pre-trained model.



Related Work
Model Compression
Building larger neural networks with more layers is a com-
mon trend in the most accurate model (Zoph et al. 2018).
Because of limited storage space, memory size, and compu-
tational budgets, it has been increasingly difficult to deploy
these models onto mobile and edge device. Many works on
compressing and accelerating deep neural networks, such as
parameter pruning (Li et al. 2016), quantization and bina-
rizationis (Jacob et al. 2018), and low-rank factorization (Yu
et al. 2017) are proposed to remove redundant structure
and preserve informative weights. Unlike these compression
approaches, which attempt to fix the amount of computa-
tion at all times, the objective of this work is to propose a
computation-configurable network. Moreover, our approach
is complementary to these model compression techniques.

Efficient Network Architecture
Apart from compressing complex models, many approaches
directly train a compact neural network from scratch.
SqueezeNet (Iandola et al. 2016) is a small CNN architec-
ture for more efficient distributed training and more feasi-
ble embedded deployment. The main design strategies of
SqueezeNet are to replace the size of original filters to
smaller ones, decreasing the number of input channels and
downsampling late in the network. MobileNets (Howard et
al. 2017) is a class of efficient models for mobile and em-
bedded vision applications. MobileNets factorize a standard
convolution into a depthwise convolution and a point-wise
convolution that drastically reduces computation and model
size. Although these approaches provide hyper-parameters
settings to train multiple models in varied size, the extra la-
tency caused from frequently switching between models and
the requirement of additional storage space is not ideal for
the system in a dynamic context.

Dynamic Network
Several works are based on the idea of using a subset of the
network specific for the input sample. HydraNet (Teja Mul-
lapudi et al. 2018) contains multiple branches specialized
for extracting features on similar classes, and a gate to de-
cide which branches to execute at inference. Dynamic Deep
Neural Networks (Li et al. 2018) achieves dynamic selective
execution by augmenting a given network with control mod-
ules. Blockdrop (Wu et al. 2018) is a reinforcement approach
to derive instance-specific inference. They propose the block
dropping strategies that selectively choose residual blocks of
a pre-trained ResNet to engage in inference operations. Al-
though these works change the inference path based on the
properties of an input sample, the computation cost of the
model can not be manually adjusted. Incomplete dot prod-
uct (IDP) operation (McDanel, Teerapittayanon, and Kung
2017) only used a subset of channels to adjust computational
cost during forward propagation. URNet (Lee, Chang, and
Kwak 2019) applied a Conditional Gating Module (CGM)
to determine the usage of each residual block.

Our work differs from these approaches in the following
ways. First, our work is based on reinforcement learning

where as IDP modifies CNN training by adding a profile
to provide an ordering for channels; URNet jointly trains
CGM with ResNet through the scale loss. In addition, our
work targets architecture-level dropping, where IDP focuses
on channel-level dropping which is complementary to our
approach. Also, our work provides a wider range of budget
constraints in comparison to URNet under equivalent or bet-
ter prediction accuracy.

The BudgetNet Model
Pre-trained Models with Branch Structure
In this work, we focus on how to dynamically regulate the
computational cost of a given model based on target budget
constraints during the inference phase. Therefore, we adopt
existing CNNs as our pre-trained model rather than design
a new network architecture. The work in (Veit, Wilber, and
Belongie 2016) showed that removing individual modules
from residual networks had minimal impact on classification
error. This observation suggests that paths in a residual net-
work do not strongly depend on each other. Accordingly, we
apply ResNet as one of pre-trained models in our proposed
framework by directly dropping selective residual block dur-
ing inference phase.

ResNeXt, a variant of ResNet, exploits a split-transform-
merge strategy in building blocks. This strategy introduces
a hyper-parameter called cardinality which is the size of the
set of transformations, or in other words, the number of in-
dependent paths. These independent paths can be consid-
ered as a kind of branch structure and is suitable for our re-
quirements. All transformations functions (paths) share the
same topology and the outputs of paths are summed up with
element-wise addition. As a result, even if we neglect the
outputs of some existing paths, the dimension of the build-
ing block’s output would be unchanged and follow-up com-
putations can still work properly. With this property, we can
dynamically select appropriate paths of each building block
to be executed during the inference phase. Adopting the pre-
trained ResNeXt in our framework provides us with a more
efficient way to utilize the network based on input samples
and budget constraints, where we can not only drop the en-
tire building block but also just mask partial paths of it.

Actor-Critic Method for Dynamic Inference
Reinforcement learning is a computational approach focus-
ing on goal-directed learning from interaction. Our proposed
framework is trained with an actor-critic method (Grondman
et al. 2012; Konda and Tsitsiklis 2000; Mnih et al. 2016)
where the actor decides which components of a given pre-
trained model would engage in inference operations, and the
critic predicts the return reward associated with the actor
from the current state. Fig. 2 illustrates the overall structure
of our proposed framework.

Policy Function and Value Function Unlike standard re-
inforcement learning, our policy π is based on the idea
in (Wu et al. 2018), which outputs all actions at once to get
an instantaneous reward. This is basically a one-step Markov
Decision Process (MDP) that starts in some initial state s and
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Figure 2: The overall structure of our proposed framework integrating with ResNeXt pre-trained model. We extract the patterns
of a given image and then concatenate image features and target budget constraints into a single informative tensor. By feeding
the tensor into the actor, we get a series of actions to decide which components of a given pre-trained model would engage in
inference operations. The critic predicts the return reward associated with the actor from the same informative tensor.

that the episode terminates immediately after one time-step
with reward r. There is no sequence of states and actions in
this case, and the process is considered as a type of contex-
tual bandit (Auer, Cesa-Bianchi, and Fischer 2002).

Given an input image x, a target budget constraint c, and a
pre-trained model with K selectable components, we define
a policy of selecting behavior as a K-dimensional Bernoulli
distribution, and the policy function parameterized by θ can
be derived as:

πθ(u|x, c) =

K∏
k=1

sukk (1− sk)1−uk (1)

s = factor([fextractor(x), c]) (2)
where fextractor denotes the feature extractor which extracts
the patterns of a given image x. Motivated by the conditional
adversarial nets (Mirza and Osindero 2014), we believe that
the value of target budget constraints can be viewed as a kind
of auxiliary information. We directly concatenate target bud-
get constraints and image features generated from fextractor
into a single informative tensor. By feeding the tensor into
the factor, we obtain a vector s in which element si ∈ [0, 1]
represents the probability of its corresponding component
being executed in the original pre-trained model during the
inference phase. An action ui ∈ 0, 1 is determined based
on si, where ui = 0 and ui = 1 respectively indicate drop-
ping and keeping its corresponding components during the
inference phase.

We adopt the state-value function of MDP to predict the
return reward starting from state s with policy π. Using a
neural network with parameters w, the state-value function
can be parameterized as:

V πw (x, c) = fcritic([fextractor(x), c]) (3)

where fcritic is fed with the same informative tensor de-
scribed in Eq. 2. State-value function generates the cor-
responding estimate of expected return. As illustrated in

Fig. 2, the actor and the critic in our framework are two sep-
arate outputs of a single network, with shared initial layers
constructing the feature representations.

Reward Function We design a reward function to de-
scribe how the actor ought to behave for different objectives.
Our first reward function encourages the actor to select an
appropriate amount of component based on the target budget
constraints while maintaining a certain accuracy. The reward
function is defined with:

R(u, c) =

 1−
√
(| |u|0K − c|)− ω if correct

−γ × (1 +
√
|( |u|0K − c)| − ω) otherwise

(4)
We measure the distance between the component usage of a
given pre-trained model and the value of target budget con-

straints by calculating
√
| |u|0K − c|. When the network pro-

duces a correct prediction, we encourage the actor by giving
a larger reward to the action using a closer percentage of
components to the target budget constraints. On the other
hand, if the network produces an incorrect prediction, we
penalize the actor with γ multiplied by the weighted value
based on the distance. That is, the action with improper com-
ponent usage would get less reward or a larger penalty when
the corresponding prediction is respectively correct or in-
correct. Furthermore, to encourage the model to use fewer
components, the reward would be decreased with additional
penalty ω when the component usage is greater than the tar-
get budget constraint.

Optimization and Back-propagation In the training pro-
cess, we would like to find the optimal policy parameters
that maximize the following expected reward:

J(θ) = Eu∼πθ [R(u, c)] (5)

To maximize Eq. 5, we adopt policy gradient algo-
rithms (Sutton et al. 2000) to search for a local maximum



in J(θ) by ascending the gradient of the policy parameter-
ized with weights θ. Considering a simple one-step Markov
Decision Process, we can estimate the policy gradient of our
policy by using likelihood ratios (Glynn 1990) as:

∇θJ(θ) = Eu∼πθ [R(u, c)∇θ log πθ(u|x, c)]

= Eu∼πθ [R(u, c)∇θ log

K∏
k=1

suk
k (1− sk)1−uk ]

(6)
We obtain an unbiased estimate of the expected gradient

in Eq. 6 with sample averages. To reduce the variance of
the gradient estimate, we utilize the value function parame-
terized by w as the baseline and define the advantage func-
tion (Mnih et al. 2016) as:

Aw(u, x, c) = R(u, c)− V πw (x, c) (7)
where the advantage function describes the improvement
compared to the expected reward of actions taken at that
state. In other words, the positive and negative advantage
values mean that the current action is a better or worse
choice than the expected result. With the advantage func-
tion, Eq. 6 can be rewritten as:

∇θJ(θ,w) = Eu∼πθ [Aw(u, x, c)∇θ log

K∏
k=1

suk
k (1−sk)1−uk ] ]

(8)
For the value function, we use smooth L1 loss to minimize
the error between estimated reward and actual reward:

Lvalue(w) = smoothL1(R(u, c)− V πw (x, c)), (9)

where

smoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise (10)

Training BudgetNet
Because the learning process of reinforcement learning is
relatively unstable and sensitive to initial settings, we refer
to the training schedule suggested in (Wu et al. 2018) and
integrate the following training tips into our training process.
We evaluate the return reward with Eq. 4 in the process of
curriculum learning and joint fine-tuning.

Encouraging Exploration We apply a simple modifica-
tion to the distribution s generated from factor to encourage
exploration and to avoid saturation problems. The modified
distribution s′ can be derived as:

s′ = α1−βt · s + (1− α1−βt) · (1− s) (11)

where α bounds the distribution s, β is the decay constant
and t is current epoch. The modified distribution is bounded
in the range 1 − α1−βt ≤ s′ ≤ α1−βt. The actor is further
encouraged to explore diverse actions in the early training
stage and would be less explorative as the number of epoch
gradually increase. When 1− βt = 0, the modified distribu-
tion s′ is equal to original distribution s.

Curriculum Learning and Joint Fine-tuning Curricu-
lum learning (Bengio et al. 2009) is a learning strategy
where a model is trained from an initial set of easy samples
that is expanded by gradually adding samples with increased
difficulty level. In this spirit, we train our framework from
easy to complex samples with two directions: 1) the number
of controllable components, and 2) the range of budget con-
straints, in order to boost the learning process and guide our
model to achieve a better local minimum.

The search space of our policy can be extremely large as
the amount of controllable components rises. To improve the
learning efficiency, we keep the first i components active,
so that the actor only learns to control the last K − i com-
ponents. As i decreases, the amount of controllable com-
ponents increases, and in the end the agent can control all
the components to maximize the return reward. In addi-
tion to exploring from smaller search space in the begin-
ning, we learn the policy from solving easier tasks first.
A target budget constraint c is uniformly sampled in the
range of [cmin, 1.0] with each training image. Intuitively, it
is much more difficult for a neural network to achieve sim-
ilar accuracy by utilizing fewer components during predic-
tion. Therefore, cmin is set to 1.0 in the beginning and we
gradually expand the border to the lower bound (cmin = 0.1)
as training epoch increases. After curriculum learning, the
agent will be capable to determine which components in the
pre-trained model is active for a given image and the target
budget constraints in inference phase. While the pre-trained
model is trained with fully utilizing every component, drop-
ping a part of components in the original model would cer-
tainly influence accuracy. Therefore, we compensate for the
accuracy degradation by jointly fine-tuning the pre-trained
model with the agent.

Experiment
Experimental Setup
Datasets We evaluate BudgetNet on two competitive
benchmarks: CIFAR10 and CIFAR100 (Krizhevsky 2009).
The CIFAR datasets consist of 60000 color images with
32×32 pixels. There are 50000 training images and 10000
test images in 10 and 100 classes for CIFAR-10 and CIFAR-
100, respectively. We adopt a basic data augmentation
scheme (cropping and horizontal flipping) that is widely
used for training image classification tasks. We also normal-
ize the data by subtracting the mean from each pixel and then
dividing the result by the standard deviation. For the follow-
ing experiments, we evaluate the classification accuracy on
the testing set.

Pre-trained Models We validate our framework with two
pre-trained ResNeXt models on CIFAR. To be specific,
ResNeXt-29 and ResNeXt-56 consist of 9 and 18 building
blocks with cardinality = 4, which lead to 36 and 72 indepen-
dent paths in the network, respectively. Table 1 shows the ar-
chitecture of the above models in more detail. Furthermore,
to compare the performance with URNet, we adopt the same
ResNet-110 with 54 residual blocks model described in their
work. These models are well pre-trained to the records on
CIFAR before being integrated into our framework.



layer name output size ResNeXt-29 (4×16d) ResNeXt-56 (4×16d)
conv1 32×32 3×3,16

conv2 x 32×32

[
1 × 1, 16

3 × 3, 64, C = 4
1 × 1, 64

]
× 3

[
1 × 1, 16

3 × 3, 64, C = 4
1 × 1, 64

]
× 6

conv3 x 16×16

[
1 × 1, 64

3 × 3, 128, C = 4
1 × 1, 128

]
× 3

[
1 × 1, 64

3 × 3, 128, C = 4
1 × 1, 128

]
× 6

conv4 x 8×8

[
1 × 1, 128

3 × 3, 256, C = 4
1 × 1, 256

]
× 3

[
1 × 1, 128

3 × 3, 256, C = 4
1 × 1, 256

]
× 6

1×1 8×8 average pool
100-d fc, softmax

# params. 1.13M 2.23M

Table 1: Pre-trained ResNeXt for CIFAR-100. The shape of building blocks are shown in brackets, and outside the brackets is
the number of blocks stacked. Cardinality C represents the number of independent paths.

CIFAR-10 CIFAR-100
Target budget
constraint c 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

URNet 92.2 93.3 93.7 93.7 93.6 70.7 71.5 72.4 73.0 72.8
18.08 20.86 32.02 44.37 52.19 28.10 28.57 32.00 44.61 49.41

BudgetNet
(Ours)

80.7 89.7 92.6 93.1 93.3 69 71.5 73.5 73.8 74.1
4.28 7.75 13.18 17.53 20.24 22.2 23.51 29.6 36.84 41.39

Table 2: This figure compares our framework with URNet (Lee, Chang, and Kwak 2019) in ResNet-110 (54 blocks) on CIFAR
datasets. The values shown in the cell are the classification accuracy (first row) and the amount of block usage (second row).

Figure 3: ResNeXt-29 (4×16d) on CIFAR 10.

Experiment Results

We report the results of the proposed framework integrated
with ResNext-29 (4×16d) and ResNext-56 (4×16d) on CI-
FAR in Fig. 3 and Fig. 4; Each figure contains four different
charts, three of them record the corresponding block usage,
theoretical FLOPs, and the inference time of a given pre-
trained model under different budget constraints. To make
fair comparisons, each reported inference time is measured
from the running results on the same NVIDIA GeForce
GTX 1080 Ti GPU. While the last one records the amount
of unique policies. We also compare our proposed frame-
work with URNet, in which the authors introduced a similar
concept of budget constraints called ”scale parameter”. Ta-
ble 2 shows the proposed BudgetNet can have similar per-
formance to the URNet but with less block usages, where
the ResNet-110 pre-trained model (54 blocks) is tested un-
der different target budget constraints.

Figure 4: ResNeXt-29 (4×16d) on CIFAR 100.

Conclusion

In this paper, we present BudgetNet, a framework allowing
users to regulate computational costs of a given model dur-
ing the inference phase. We propose a reinforcement learn-
ing approach with actor-critic algorithms to train an agent
by dynamically determining which subsets of the given neu-
ral network architecture are allowed to engage in inference
operation based on the input image and target budget con-
straint. We deploy our framework on popular CNNs (ResNet
and ResNeXt) and conduct extensive experiments on CI-
FAR. Experimental results show that our framework can ef-
ficiently trade off between the computation cost and accu-
racy over a wide range of budget constraints.

Our work can be extended in several directions. For ex-
ample, we can integrate the existing feature extractor into
convolutional modules of a pre-trained model to further re-
duce execution overhead. Our framework can also be ap-
plied from architecture-level selecting, blocks or paths, to
channel-level selecting, filters, for further flexibility.
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