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Abstract

Machine learning (ML) applications in Internet of Things
(IoT) scenarios face the issue that labeled data is expen-
sive and hard to obtain. In addition, the performance of the
trained models usually depends on a specific context: (1) lo-
cation, (2) time and (3) data quality. In this work, we propose
a weak-supervision approach for the IoT domain to auto-
generate labels based on external knowledge (e.g., domain
knowledge) through simple labeling functions. Our approach
enables quick re-training of ML models for new contexts by
removing the labeling bottleneck. We evaluate our approach
in a smart transportation scenario, where we classify trans-
port modes using mobile sensor data. Our weakly-supervised
model achieves a micro-F1 score of 80.2%, with only seven
labeling functions. This is close to the 81% of a fully super-
vised model, which requires manually labeled data.

Introduction

The Internet of Things (IoT) is expanding rapidly in various
sectors such as smart buildings, smart cities, or smart trans-
portation. At the same time, machine learning (ML) sup-
ported systems are increasingly used to provide meaningful
insights by performing classification or prediction tasks on
top of IoT data. Based on our practical experience, the IoT
domain poses various challenges for generalizing traditional
data driven ML approaches. We summarize these challenges
along three dimensions, as depicted in Figure 1:

1. Location. Different locations (e.g., separate sensor de-
ployments in a single city or deployments in multi-
ple cities) behave differently. For example, the radio-
frequency (RF) signal propagation depends heavily on the
deployment location (e.g., through varying signal attenu-
ation) (Fiirst et al. 2018).

2. Time. Deployment characteristics as well as data patterns
change through time. I.e., a ML model that works well
when training data is collected, might degrade its accu-
racy throughout the lifetime of a deployment. Further, it
is hard to quantify this degradation, because ground truth
is expensive to obtain and deployment times comprise of-
ten several years.
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3. Data Quality. In IoT deployments, data is frequently
noisy, sparse and heavily imbalanced. E.g., an application
might require the classification of relatively rare events
such as road accidents or infrequent transport modes; a
sensor network deployment might result in high variances
in sampling frequency and missing data due to packet
loss. As IoT devices have limited power and computation,
collecting highly dense data is often not possible.
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Figure 1: Challenge-Dimensions of Applying ML in IoT

The common factor in above challenges is a lack of train-
ing data (i.e., labeled data). Available training data would
help to re-train a ML model for a different location, time
or data quality context. However, training data collection is
a key bottleneck for IoT applications (Mohammadi and Al-
Fugaha 2018). It often requires a human to manually anno-
tate events in a data stream by observing the events in the
real world. As we have seen in practice, this effort might
need to be repeated for different locations and over the life-
time of a deployment. Fortunately, sensed phenomena in IoT
deployments typically follow an underlying model. For in-
stance, car acceleration follows a well understood physical
model of engine torque that results in a positive traction
force moving the car forwards when accelerating, and nega-
tive forces based on the car’s inertia and frictional resistance
of the road. To be practically useful, models do not need to
be as complex and explicitly linked to physical models. Of-
ten external knowledge in form of much simpler and more



abstract models (e.g., based on human domain knowledge or
on past experiences) can already provide valuable input to a
traditional purely data-driven ML process for IoT applica-
tions.

In this work, we include external knowledge for the ML
training phase by auto generating labels for unlabeled mo-
bile sensor data using weak supervision. Through automat-
ing the labeling process, a ML model can quickly be re-
trained for a different deployment context (see Figure 1). We
demonstrate our approach with sensor data that we collect
from user smartphones in order to perform transport mode
classification (an essential problem in smart transportation
see Section 2). Our approach avoids the need for large,
manual training data collection and annotation. Instead, we
leverage weak supervision sources that we apply automated
to label sparse sensor data. Each of these sources on its own
is noisy; the resulting labels are insufficiently accurate and
provide limited coverage. However, we show that by com-
bining multiple noisy knowledge sources, we are able to
successfully train commonly used ML models for transport
mode detection. To this end, we adopt the recently devel-
oped data programming concept (Ratner et al. 2017) used
in Natural Language Processing (NLP) and knowledge base
construction, to the transport mode detection problem, and
integrate our method into an open-source mobility data col-
lection and analytics framework (K. Shankari et al. 2018).

Compared to existing transport mode detection work, our
method uses weak supervision to label fully unlabeled data,
removing the need for hand-label training data. Our method
works with sparse sensor data (=~30s sampling interval)
and smartphone OS optimized APIs (i0S/Android) to query
accelerometer-based activity data. This enables us to con-
tinuously collect data on user smartphones without heavily
impacting battery consumption, thus making our method di-
rectly applicable in practice. We summarize our contribu-
tions as follows:

* Practical application of weak supervision to loT domain.
We successfully adopt weak supervision for the auto-
matic, multi-class labeling of sensor data in a practical
IoT system. We find obstacles to address, such as the
easier accessibility of external knowledge and a general
method for sensor data segmentation.

 Validation on sparse dataset with 300k data points
(ca. 2500h). We validate our method with an in the
wild deployment. Overall, our weakly-supervised method
achieves a micro-F1 score of 80.2 % over four transport
classes. The baseline supervised learning approach, which
uses manually labeled data, achieves an only slightly
higher result of 81 %.

Target Application & Problem

We now discuss our application scenario, its requirements
and describe the transport mode detection problem.

Application Scenario

Currently, we implement a solution together with the local
city, where we collect sensor data from end-users in an urban
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Figure 2: Application Scenario. Based on collected and an-
alyzed data, we provide insights to individual commuters
(e.g., their travel times for different transport modes or CO5
footprint) and overall insights to the local government.

environment to create insights for both citizens and city ad-
ministration. The main need of our stakeholders is to collect
location trajectories and transport modes to: (1) provide rec-
ommendations to commuters of potential transport options
(e.g., train, bike) and (2) provide an overall, aggregated view
of transportation to the local government to inform policy
decisions (e.g., new infrastructure, bus line change).

Transport Mode Detection Problem

Transport mode detection is fundamental to optimize urban
multimodal human mobility (Gallotti and Barthelemy 2014)
and for our application. It requires a two step segmenta-
tion of sensor data to trips and sections (based on transport
modes), as well as accurate classification of these sections
(e.g., walking, riding a bike, driving a car).

Other have proposed transport mode detection using
smartphone sensors such as GPS (Zheng et al. 2008),
accelerometer (Hemminki, Nurmi, and Tarkoma 2013),
barometer (Sankaran et al. 2014), or combinations of
these (Reddy et al. 2010) as well as fusing GIS data (Sten-
neth et al. 2011) to improve accuracy. In these works, the
proposed methods leverage supervised ML using labeled
data points as training data. This labeled data is provided by
users/participants of the studies. The problems with these su-
pervised approaches link to the challenges of applying ML
to IoT systems in practice that we identified in Section 1:

1. Manual labeling by users. Data needs to be manually an-
notated with labels. Only persons for which this data was
collected can annotate, i.e., only they know their method
of transport for each section of their trips. This requires
much user effort, reliance on the users willingness, and
trust in their labeling.

2. Limited generalization. The trained ML classifier might
be biased to the annotated dataset. Transport mode data
is usually collected by relatively few people under con-
strained conditions (e.g., a set of volunteers from univer-
sity travelling mostly inside a single city or region).

3. Data Quality: Smartphone battery use and OS limita-
tions. Data collection is constrained by user requirements



of low battery impact and data use. Published datasets
often have small, uniform sampling intervals. However,
deployments in practice face challenges such as power-
saving smartphone OS limitations for background ser-
vices to reduce constant GPS data collection (e.g., geo-
fencing, sensor batching and sensor fusion).

To overcome these problems, we improve the availabil-
ity of labeled data by applying and adapting weak super-
vision techniques to the transport mode detection problem.
Our approach, which lets us generate labeled training data
in a quick and effective manner, is outlined in the following
sections.

Applying Weak Supervision to Transport
Mode Detection

In this section, we describe our approach of applying weak
supervision to mobile sensor data, specifically to the trans-
port mode detection problem. Our approach addresses the
issues of (1) Mobile sensor data collection, (2) trip and sec-
tion segmentation and (3) transport mode training/classifi-
cation. Figure 3 depicts the main building blocks and flow
of our approach. Sensor data (location and activity data) is
sensed from user smartphones. In the Segmentation Phase,
we then align time series from multiple sensors to the same
sampling time and segment time series first into trips (by ap-
plying a dwell time heuristics) and section candidates (using
a developed activity supported walk point segmentation al-
gorithm). The outcome of this step is a set of section can-
didates, each candidate contains a time-series of location
and activity data points. In the Label & Training Phase, we
apply a set of labeling functions to these candidates. Each
function encodes human heuristics and/or external knowl-
edge (e.g., from OpenStreetMap) to “vote” on the transport
class of a candidate section. We feed the resulting label ma-
trix into Snorkel (Ratner et al. 2017), which learns a gen-
erative model from all labeling functions and their votes on
each candidate section. Finally, we employ the generative
model to label all candidate segments and train a discrimi-
native ML model with the probabilistic labels. In the Classi-
fication Phase, this model is then used to classify incoming
candidate section into transport modes. Based on this clas-
sification, we then re-segment by merging adjacent sections
of the same mode and return the results (classified trips and
sections) to users. We now describe the detailed working of
the main phases of our method.

Mobile Sensor Data Collection

Our application requires that we collect location trajecto-
ries of trips. A major problem with location data collection
is its high power impact (e.g., GPS uses 30 mA when ac-
tive (Yu et al. 2014)). Internal sensors that have shown value
for transport mode detection (accelerometer, gyroscope) re-
quire a high sampling frequency to be useful. For exam-
ple, accelerometer sampling frequencies need to be usually
above 10 Hz on three axial directions and not only depend
on the phone’s orientation and position, but also on the spe-
cific user and vehicle (Sankaran et al. 2014). This makes

transport mode detection complex and power intensive. In-
stead, in our approach, we use the fused Location APIs of
Android and i0OS, which reduces battery consumption com-
pared to native GPS sampling due to OS features such as
sensor batching, sensor fusion and geo-fencing. Likewise,
to gather transport mode relevant data from internal sensors,
instead of sampling raw data for each available sensor, we
query the Acivity API available on Android and iOS. This
approach greatly improves battery consumption and reduces
network traffic, but comes at the cost of sparse sensor data
with a dynamic, context-dependent sampling interval.

Time Series Segmentation

In this phase we filter and re-sample incoming sensor
time series and segment into (/) Trips and (2) Can-
didate Sections (see Algorithm 1 for a brief overview
of the steps). Our sampled data is sparse, the time se-
ries of location updates and activity detection updates
are not aligned, and without a fixed sampling interval.
Therefore, we filter and re-sample both data-streams in
CleanTrip (trip), aligning the activity detection time
series Sy = ({a1,t1}, {ag,ta} ... {an, tn}) with the loca-
tion time-series Sz, = ({l1,t1}, {l2,t2} ... {lm,tm }):

S(A,L) = ({ala llvt1}7 {ala llvt1}7 e {a’ru lnytn}) (])

Algorithm 1 Candidate Section Segmentation

1: trip=[po, p1 ...pn] > A trip consisting of a timeseries of N
points

2: CLEANTRIP(trip) > resample
data-points to location timestamps and map between Android
and iOS activity modes

3: GETWALKPOINTS(trip)

4: CREATESEGMENTDRAFTS(trip)
based on assigned walk points

5: FILTERSEGMENTS(trip)

> Create draft segments

> Filter and merge segments

After aligning both time series, we segment them into
trips, using a dwell-time heuristics, and in into candidate
segments, using a developed activity detection supported
walk-point segmentation algorithm. We define a trip when
a person travels/commutes between two locations A and B,
while the person dwells in both places a substantial, config-
urable time period 7. Currently, we have set 7' = 600s. A
trip itself might contain multiple sections {57, S, ..., }
with different transport modes (e.g., WALK — TRAIN —
WALK). Detecting these sections is more complex than de-
tecting the start and end of a trip as users can quickly change
between two transport modes (e.g., from walk to train). To
approach this problem, we follow the same line of thought
as in (Zheng et al. 2008): between two modes, there must
be a (small) walking segment. Based on this insight, we
find candidate segments through a two step process on a
point granularity and on a segment granularity. First, we find
certain walk points, certain other points (i.e., non-walking),
probable walk points and probable other points. The reason
behind classifying points into “certain” and “probable” is
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Figure 3: Overview over Transport Mode Detection Steps. Data collection occurs on user smartphones, while segmentation,

labeling, training and classification is executed in the cloud.

to not filter out small segments that are still highly likely
to represent a different transport mode. In our experience,
this is often the case when the walk distance between two
modes of transport is short or when we do not receive loca-
tion updates for a period of time due to no available sig-
nal (e.g., during an underground metro ride). The output
of this step allows us to create initial draft segments. In
the FilterSegments (trip) step we then use the draft
segments and the assigned point classes to filter and merge
candidate segments (e.g., we merge adjacent non-walking or
walking segments).

Labeling, Training & Classification Phase

We use weak supervision sources to compute probabilistic
labels for the generated candidate segments and use these
labels to train a discriminative ML model that can clas-
sify unseen segments. With weak supervision we can gen-
erate training labels for—potentially large amounts of—
unlabeled data based on imprecise or limited supervision
signals. These signals can be modeled in a generative pro-
cess that de-noises the labels based on their agreements
and disagreements for each data point. In Data Program-
ming (Ratner et al. 2017), the framework we use in our im-
plementation, supervision sources are abstracted to so called
labeling functions. Each function f : X — Y U () takes a
data point z € X as input and outputs the label y € Y or ab-
stains from casting a vote. Let us consider n labeling func-
tions and m data points. This results in labeling matrix 2.
This matrix, together with the three factor types of labeling
propensity, accuracy, and pairwise correlation is the input
for creating the generative model, resulting in probabilistic
labels for each data point (for more details see (Ratner et al.
2017)).

Y11 Y12 Y1z ... Yin
Y21 Y22 Y23 ... Y2n

M= 1| . . . . . 2)
Yml Ym2 Ym3 - Ymn

Through this generative process, the noise and variance
in accuracy and coverage of each single labeling function is

taken into account, putting more weight on high accuracy
labeling sources and less on low accuracy ones. We then
use these probabilistic labels to train a discriminative model
(i.e., any common supervised ML model). This model gener-
alizes beyond the information encoded in the labeling func-
tions and can improve further when we generate more train-
ing data from unlabeled data. This is especially important
for an IoT scenario, where new data is constantly generated
in a streaming fashion. We discuss the specific implementa-
tion of our labeling functions and the discriminative model
in the following section.

Experimental Evaluation

We validate our method against a dataset that we collect in
the wild over a period of 4 months, containing 300k data-
points from 8 end-users. We sense GPS location through i0S
and Android Location API and accelerometer based activity
data through the Activity API. Users have partially labeled
data with a developed visual labeling tool. We use this data
to evaluate our method, splitting our data in training (1/2)
and test data (1/2). We classify four transport modes: walk,
bike, car and train.

Labeling Functions & Generative Model

We implement seven labeling functions that combine exter-
nal knowledge with sensor data to vote on the transport clas-
sification of a section. For example, we implement functions
that use the sensed speed together with human heuristics
on common speeds for different modalities to vote on the
transport mode (LF_median_sensed_speed and LF_
quantile_sensed_speed). We also integrate Open-
StreetMap (OSM) and use the provided annotations of pub-
lic transport stops (LF_osm). Table 1 summarizes our la-
beling functions and depicts their individual performance.
Overall we achieve a micro-F1 score of 74 % for the gener-
ated labels. Note, all following F1 scores are micro-F1.
Figure 4 depicts the normalized confusion matrix for the
generated transport mode labels. Walk, bike and car can be



distinguished well, while our labeling functions have prob-
lems to differentiate car and train sections. After further in-
vestigating the problem, we find two main reasons: (1) car
and train have similar speed characteristics and (2) the exter-
nal knowledge in form of OSM data is not precise enough
to differentiate well between both classes (37% accuracy).
Last, we test how added knowledge in form of additional
labeling functions and knowledge sources influences the
overall labeling F1 score. Table 2 shows that we gradually
improve the overall performance when we add additional
knowledge sources from 64% to 74%. This indicates that
further knowledge sources will improve performance.

1.0
ﬁ 0.73 0.12 0.084 0.065
=
< 0.8
% g 0.02 0.6
S,
[}
= -0.4
[ Cé 0.12 0.13 0.68 0.074 :
S
-0.2
Z 0.19 0.019 0.23
é -0.0

WALK BIKE CAR
Predicted labels

TRAIN

Figure 4: Weakly-Supervised Labels. Labeling confusion
matrix for different modes. Overall F1 score: 74 %.

Discriminative End Model

Next, we train ML models using the data labeled by the
generative model. Since we are dealing with an imbalanced

Table 1: Labeling Function Evaluation Analysis

Labeling Function Classes Coverage Accuracy

LF_max_velocity [0,1,2,3] 100 % 72.1 %

LF_median_
velocity

[0,1,2,3] 99.6 % 68.5 %

LF_motion_ [0, 1,2] 829 9% 80.5 %

activity

LF_std_velocity [0,1,2,3] 100 % 46.8 %
LF_osm 3] 104%  37.0%
LF_median_ 0,1,2,3] 100 % 73.6 %
sensed_speed

LF_quantile_ [0] 657% 183 %

sensed_speed

dataset, we oversample the underrepresented classes using
SMOTE (Chawla et al. 2002). This technique generates new
synthetic data points from the underrepresented classes by
cloning the original data points and altering their features
slightly. We use SMOTE’s default parameters (all classes but
the majority one are sampled to balance the dataset).

We test several classifiers, from simple linear models to
neural networks and observe the best performance in F1
score for Random Forests (RF). We have implemented our
RF using Scikit learn with 200 trees and a maximum depth
of 6 levels. RF mode detection F1 score is 80.2 %. As for our
Neural Network (NN) approach, we use Tensorflow (Abadi
et al. 2016) with Keras. After several tests with different ar-
chitectures, we achieve the best accuracy with 3 hidden lay-
ers of 24 units each. We feed our balanced dataset and train
the neural network for 100 epochs. NN mode detection F1
score is 78.4 %.

We also compare our results against a traditional super-
vised approach, using the hand-labeled data of the training
split, to train the same RF. This results in a only marginally
better F1 score of 81.0 %. Table 3 summarizes our overall
results. Finally, Figure 5 depicts the confusion matrix for
our end model (RF). Comparing these results to labels (Fig-
ure 4), we see that the trained model is able to remove noise
and generalize beyond the information encoded in the la-
beling functions. Interestingly, RF performs better than the
NN. We suspect that this might change when evaluated on a
larger dataset, which we leave for future work.

Lessons Learned

Our results show that extensive hand-labeled data might not
be necessary for some classification problems in the IoT do-
main if we are able to encode external knowledge based on
domain experts, external knowledge bases or physical mod-
els efficiently. We believe that a key issue to be addressed
is to make external knowledge easier accessible to encode it
in weak-supervision signals. For instance, OpenStreetMap
contains useful information for many smart city classifica-
tion tasks (e.g., in form of user annotations, geometric infor-
mation etc.), but it is relatively hard to access this informa-
tion, also from a performance perspective (e.g, we needed to
create a layered caching architecture to enable a fast, itera-
tive development of our labeling functions).

Another issue is the granularity in which IoT time-series
data should be labeled. Often, we can write labeling func-
tions on multiple abstraction levels (e.g., a single sensor
point or a sequence of sensor points). Recently, (Sala et al.
2019) have made similar observations for video streaming
data (frame, sequence abstraction). In our application sce-
nario, we have developed the trip and segment abstraction.

Table 2: Labeling performance gain with additional knowl-
edge. Velocity (V), Sensed Speed (S), Accelerometer (A),
OpenStreetMap (OSM).

\% V+S V+S+A V+S+A+ OSM
64.3 % 70.35 % 72.4 % 74.1 %
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Figure 5: End model. Classification confusion matrix for dif-
ferent modes. Overall F1 score: 80.2 %.

Table 3: F1 score of weakly-supervised labels and end mod-
els against hand-labeled ground truth. Auto-generated labels
(Generative Model - GM), Random Forest trained with auto-
generated labels (Weak-RF), Neural Net trained with auto-
generated labels (Weak-NN), Random-forest trained with
hand-labeled ground truth (SUPV-RF).

GM Weak-RF Weak-NN SUPV-RF
74.1 % 80.2 % 78.4 % 81.0 %

In future, we might see a general pattern evolve across dif-
ferent applications that can become the functionality of a
data programming framework.

Conclusion and Future Work

We have demonstrated that weak supervision can be applied
successfully to sensor data in a smart transportation appli-
cation, close in performance to a traditionally supervised
trained model, which requires more human effort for label-
ing. With additional data, we expect that weakly-supervised
models will surpass traditional supervised approaches, as we
have seen in other domains (Ratner et al. 2017). As next
steps, we are deploying our approach in context of a larger
smart transportation project together with the city. This will
enable us to collect more data, expanding our classification
to other transport modes and validating classification perfor-
mance through time. We further will evaluate our method
with deployment data from another city in order to test how
general applicable our labeling functions are and how we
can automatically adapt them (e.g., to different speed limits
and public transport infrastructure in different countries).
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